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Abstract

Rank 1 connections, i.e., pairs F,G of tensors (matrices) differing by a rank 1 tensor, G = F + f ® n, play an im-
portant role in the nonlinear elasticity and in particular in the theory of solid-to-solid phase transformations. If F, G are
rank 1 connected, G is said to be a rank 1 perturbation of F. This paper describes the set of all rank 1 perturbations of F
with prescribed singular values. In an n-dimensional space, this set is shown to consist of 2” families of dimension n — 1
and within each family, G and f may be expressed as functions of the unit vector n, given by explicit formulas. These are
then specialized to dimensions n = 2 and 3. Some illustrative examples are given. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Let Lin denote the linear space of all second-order tensors on an n-dimensional real vector space Vect
with scalar product. (If Vect is identified with R", then Lin may be identified with the set of all n by n
matrices.) The tensor G € Lin is said to be a rank 1 perturbation of the tensor F € Linif G = F + f ® n for
some f € Vect, n € Sph := {n € Vect : |n| = 1}, with |- | the euclidean norm. In indices, G;; = Fj; + fn;.
Rank 1 perturbations play important roles in the theory of coherent phase transitions in crystalline solids,
and, through the definition of rank 1 convexity, in the nonlinear (thermo) elasticity of isotropic materials. '
The underlying reason is the Hadamard lemma for a continuous deformation with a discontinuity of the
deformation gradient across a singular surface S. The limiting values of the deformation gradients from the
two sides of S must be rank 1 connected.

In the last 15 years, a theory of martensitic transformations in crystalline materials based on energy
minimization has been intensively studied (Ball and James, 1987, 1992; Fonseca, 1987; Chipot and Kin-
derlehrer, 1988; Bhattacharya, 1991, 1992, 1993; Bhattacharya, 1994; Dolzmann and Miiller, 1995; Abey-
aratne et al., 1996; Ball and Carstensen, 1997). The microstructures can often be analysed by solving algebraic
problems of finding matrices on energy wells having appropriate rank 1 connections. Similarly, in the
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isotropic nonlinear elasticity, the rank 1 convexity notion and the associated rank 1 perturbations are helpful
in analysing stored energy functions (Ball, 1977) and in particular in the problems associated with the re-
laxation and rank 1 convexification of the nonelliptic energy functions (Dacorogna, 1990; Kohn and Strang,
1983, 1986a,b,c; Dacorogna and Koshigoe, 1993; Buttazzo et al., 1994; Dacorogna and Tanteri, 1998).

Here, a more systematic approach to rank 1 perturbations is presented inasmuch as this paper describes
all rank 1 perturbations G of a given F subject to the condition that G has prescribed singular values. 2
Recall that the singular values of a tensor G are defined as the eigenvalues of VGG' arranged nonin-
creasingly, with appropriate multiplicities. In view of the polar decomposition theorem, it suffices to
consider the case when F = V is positive definite symmetric. It turns out that if v = (vy,...,v,) are the
singular values of F then w = (wy,...,w,) are the singular values of some rank 1 perturbation of G if and
only if w, v satisfy the following system of inequalities

wy = U2, v Zwy = U3y...5Up1 = Wy,

which I propose to call bilateral interlacing inequalities (Silhavy, 1999). It is shown that for a given n-tuple
w = (wy,...,w,) subject to the bilateral interlacing inequalities, and in the absence of degeneracies, the set of
all rank 1 perturbations G = V + f ® n with the prescribed singular values w consists of 2" families in Lin,
each of dimension n — 1, parametrized by n from a certain set A C Sph that depends on V and w. For each of
the 2" families, the value f is a function of n given by rather explicit formulas involving the roots 4, ..., A,_;
of a certain polynomial of degree n — 1, related to the characteristic polynomial of ¥> — Vn ® Va. It turns
out that provided these are known, all the substantial information about G is derivable from explicit for-
mulas. Such is the case of the amplitude f, of the members R, H,K of the polar decomposition
G = HR = RK, and of the diagonalization of H = vV GG" in the basis of eigenvectors of V. For n = 2, 3 the
roots Ay, ..., h,_; are easily determined by V', n and the formulas become completely explicit.

The general rank 1 perturbations are approached through symmetric rank 1 perturbations B =
A+ m® m, where A, B are symmetric and m € Vect. The polarization formula (4.6) shows that a general
rank 1 perturbation may be treated as a superposition of two symmetric rank 1 perturbations. Following an
earlier work (Donoghue, 1974), in Silhavy (1999), formulas for the components of m in the basis of ei-
genvectors of A have been derived, including the degenerate case. Here, I furthermore provide an or-
thogonal matrix giving the diagonalization of B in the basis of eigenvectors of 4 and apply these facts do
derive the results on the general rank 1 perturbations described above.

The results provide a simple way to the particular results known previously. I choose to illustrate that
briefly on the formulas for mechanical twinning * and on the rank 1 perturbations of identity, * playing an
important role in determining the orientation of the austenite/martensite interface, both classical and
nonclassical.

2. Elementary systems and Cauchy matrices

Let D"={x€eR":x; = --- > x,}; we furthermore denote by R, (R, ,) the nonnegative (positive) half-
axis and write R’ , R, for the nth cartesian powers of R, R, . Throughout, the indices i, j, k, m range the
interval {1,...,n} unless stated otherwise. If « € R", we say that @ has distinct components if a; # a; for all
i,j,i # j. Wesay that x € R" is nonnegative (positive) if x € R" (x € R"., ). If a,b € R" then ab denotes the n-

2 Rosakis (1990) gave a particular rank 1 perturbation with the prescribed singular values if n = 3; another set of particular rank 1
perturbations is given in (Silhavy, 1999) arbitrary dimension.

3 See Ericksen (1981, 1985) and Gurtin (1983).

4 See Khachaturyan (1983, p. 176) and Ball and James (1987, Proposition 4).

5> See Wechsler et al. (1953), Ball and James (1987) and Ball and Carstensen (1997).
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tuple ab = (a1by,...,a,b,). If f: R — R is a scalar-valued function of a scalar variable and a € R", then
f(a) denotes the n-tuple f(a) := (f(a1),...,f(a,)). In particular, a*> = (a?,...,a?) and if a is nonnegative
then \/a = (\/a1, ..., /a,). Furthermore, ey, ..., e, denotes the canonical basis in R" and {—1,1}" denotes

the set of all n-tuples w = (wy, ..., w,) where w; € {—1,1}. For each a € R", p, denotes the polynomial
pu(2) =@ —2) =Y S*a)(—2)"", zeR, (2.1)
i1 =0

where S* is the kth elementary symmetric function of n variables,

0
S ary...,a,) =1, SKay, ... a,) = Z a, ...a,, a€R, k> 0.
1<ij<<ig<n
For each a € R", we define

n

di(a) == H(ai —aj).

i=1
i

Let S : R" — R" be defined by S(a) = (S'(a
derivatives of S at a, where M;; = Sj(a) :=

)s-.-,8"(a)), a € R", and let VS(a) = [M;;] be the matrix of the
S'(a)/0a;.

2.1. Elementary systems

The elementary system corresponding to a,b € R" is the linear system for the unknown x € R" of the
form

S(b) — S(a) = VS(a)x,
explicitly,

SK(b) — S*(a) = zn:sf(a)xj, k=1,...,n. (2.2)

The matrix VS(a) of the elementary system is nonsingular if and only if ¢ has distinct components (Silhavy,
1999, Lemma 2.4); hence in this case, the system is uniquely solvable for each 5 € R". If some of the
components of a coincide, then the system is solvable only for certain b (Silhavy, 1999). However, for our
purposes it completely suffices to describe the solution when a, b or b, a satisfy the interlacing inequalities.
We say that a,b € D" satisfy the interlacing inequalities if

b1>a1>b2>a2>--->bn2an. (23)
If c € R" and z € R, we denote by m(z;¢) = 0 the multiplicity of z in the sequence cy,...,c,. An index
i€ {l,...,n} is said to be the beginning of an interval of constancy of a € D" if either i=1 or i > 1 and

a;_1 > a;. An interval of constancy of a is an interval of positive integers of the form {j : i<j < i+ m(a;;a)}
where i is the beginning of an interval of constancy of a. The end of an interval of constancy of a is
i — 1 + m(a;,a). Note that if the components of a are distinct, then each i € {1,...,n} is the beginning and
end of an interval of constancy of a.

Proposition 2.1. If a, b satisfy the interlacing inequalities then
(1) the elementary system corresponding to a,b has a particular solution given by

5= (b —a) [] 224, where P() = (i a, £ a)}: (24)

ery YT Y
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(2) we have x; = 0 for each j; moreover, x; > 0 only if j is the beginning of an interval of constancy of a and
the end of an interval of constancy of b;
(3) the general solution is the sum of this particular solution with any n-tuple u € R" such that

Z u=0, y=1,...,r,

iy S J<iysn

where iy,iy,...,i. is the increasingly ordered set of all beginnings of the intervals of constancy of a,
i1 :=n+ 1, (and necessarily r is the number of all distinct values in the sequence a);
(4) if a has distinct components the elementary system corresponding to a, b has a unique solution x given by

x; = pylay)/dj(a). (2.5)

Solution (2.4) is called the particular solution of the elementary system corresponding to a, b.

Proof. For the proof of (1), (3), (4), see (Silhavy, 1999, Section 3). Let us prove (2). If i is the beginning of an
interval of constancy of @ with the interval of constancy {j:i<j < m(a;a)} and with the multiplicity
m(a;;a) > 1, one finds that the interlacing inequalities give b; = q; for all j, i < j < m(a;;a) and thus (2.5)
implies x; = 0 for all j, i < j < m(a;;a). The assertion about the end of an interval of constancy is proved
similarly. O

In the absence of degeneracies, the elementary system reduces to a Cauchy system to be now introduced.
Let a,b € R" be such that
bi#a; forall i,je{l,... ,n}. (2.6)

If, moreover, a,b have each distinct components, the Cauchy matrix corresponding to a,b is the matrix
C = [Cy] with elements C;; = (b; — a j)fl, and the Cauchy system corresponding to a, b (or corresponding to
the Cauchy matrix C) is the n by »n linear system for the unknown x € R":

Y Cpy=1, i=1,....n (2.7)
Jj=1

Proposition 2.2. If a,b € R" have each distinct components and satisfy condition (2.6) then x € R" is a solution
of the elementary system corresponding to a,b if and only if x is a solution of the Cauchy system corresponding
to a,b.

Proof. It has been shown in (Silhavy, 1999, Section 3), that x satisfies the elementary system corresponding
to a, b if and only if

p.(2)f(2) = pp(z), ze€R\{ay,...,a,}, (2.8)

where f'is a rational function defined by
fle) =1+ ij/(aj - z).
=1
Thus, if x is a solution of the elementary system, Eq. (2.8) implies p,(b;)f (b;) = p»(b;) = 0. By Eq. (2.6)
Ppa(b;) # 0 and so f(b;) = 0 which means that x satisfies the Cauchy system. The converse implication is

obtained by reversing the arguments. [J

The reciprocal elementary system corresponding to a,b € R" is the system
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S(b) — S(a) = VS(b)y

for the unknown y € R". Since $*(—b) = (—1)*8*(b), VS*(—b) = (—1)*"'VS¥(b), the reciprocal elementary
system corresponding to a, b is the elementary system corresponding to —b, —a. If a, b satisfy the interlacing
inequalities, the reciprocal elementary system corresponding to a, b has a particular solution given by
bi—a; . )
y=;—a) [] /= where 0(j) :={i: b # b;}. (2.9)
o) b = bi

Moreover, y is nonnegative and y; > 0 only if j is the beginning of an interval of constancy of @ and the end
of an interval of constancy of b. If b has distinct components then Eq. (2.9) reduces to

yi = —pa(b;)/d;(b). (2.10)

If a, b € R" have each distinct components and satisfy condition (2.6) then the reciprocal elementary system
is equivalent to the reciprocal Cauchy system corresponding to a, b, which is the system

chiyj:17 1'21,...71’1
j=1

for the unknown y € R". This is the Cauchy system corresponding to —b, —a.
The following proposition shows that the particular solution of the elementary system can always be
obtained by solving a ‘reduced’ Cauchy system.

Proposition 2.3. Let a, b satisfy the interlacing inequalities, let x, y be the particular solutions of the ele-
mentary and reciprocal elementary systems corresponding to a,b, let

XC={i:x; =0}, X' ={i:x;>0}, Y ={i:yp=0}, Y ={i:y>0}

and note that since x,y are nonnegative, we have Xuxt=Y'uyt= {1,...,n}. Then,

1. X° and Y° have the same number of elements and therefore there exists a unique increasing mapping s from
Y° onto X°;

2.0f (i,j) € X" x Y" then a; # b; and a* := {a; : i € X"}, b* := {b; : i € Y*} have each distinct components,

3. the restrictions x* = {x; : i € X'}, y* :={y,:i € Y'} are the unique solutions of the Cauchy and recipro-
cal Cauchy systems corresponding to a*,b", ie.,

Xi :pb+(ai)/di(a+)a l S X+7 (2113)
Vi = —par(a;)/d;(b7), jeY, (2.11b)
where
por@) = [[l@-2, d@)= [] @-a), iex"
kex*t keX*, k#i

and py+(z), d;(b") are defined analogously with X* replaced by Y*.

Proof. Let ¢ be the greatest common divisor of p,, p, and denote by p, = p./q,p, = p»/q- Let V, W be the
sets of all roots of p,, p,, respectively, taken with the corresponding multiplicities. The construction implies
that V, W have the same number of elements, counting the multiplicities. Let us show that the multiplicity
of each element of V and of each element of W is actually 1. To see it, let ¢,, 1 < g <p, be an increasingly
ordered set of all points common to @ and b, i.e., ¢, are such that ¢; < ¢; < --- < ¢,, for each y there exist i, j
such that ¢, = a; = b;, and if a; = b; for some i, j then ¢, = a; = b; for some 7. Then,
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_qa ﬁ C _Z 71 _qh ﬁ C _Z Ya (212)

7=1 y=1

where m, = m(c,;a),n, = m(c,; b), and the polynomials ¢°, ¢} are as follows. The set of roots of ¢° is exactly
the set of elements of @ that are not in b and the set of roots of ¢ is exactly the set of elements of b that are
not in a, with the corresponding multiplicities. If £ is an element of a not contained in b then the interlacing
inequalities imply that m(&,a) = 1; thus the multiplicity of the roots of ¢° is 1 and the same is true for ¢J.
Both ¢°, ¢ contribute to p,, p,. Finally, it remains to see how the products containing ¢, in Eq. (2.12) enter
Pa» Dy- The interlacing inequalities imply that m, — 1<n, <m, +1, 1 <y <p, and thus, if m, = n, + 1, the
factor ¢, — z (in the power 1) goes to p, but does not go to p,. If m, = n, then c, is neither the root of p, nor
the root of p, and if m, = n, — 1, the factor ¢, — z goes to p, but does not go to p,. This completes the proof
of the assertion about the simple multiplicity of the roots of p,, p,. Also the roots of p,, p, are disjoint.
Thus since there are no multiplicities in V, for each o € V there exists a unique 7 such that o = @; and 7 is the
beginning of an interval of constancy of a, and for each f € W there exists a unique j such that f = b, and j
is the end of an interval of constancy of 5. Let us show that

V={a:ieX"}, (2.13a)
W={b:jeY"} (2.13b)

The elementary system reads (cf. the proof of Proposition 2.2)

pp(2) = pa(2) 1+Zx,-/(a,-—z)], z€R\ {a;:i e X"},

ieXt

which is equivalent to

) 1+in/(ai—z)], ze€R\ {a;:ie X"} (2.14)

ieX

Since each element of X* is the beginning of an interval of constancy of a (see Proposition 2.4) we have
a; # a; for each i, j € X*, i # j. Thus, the singularities in the square brackets in Eq. (2.14) cannot cancel
each other. The left-hand side of Eq. (2.14) has no singularities, and thus the absence of singularities of the
right-hand side implies that p,(a;) = 0 for each i € X* which gives {a; : i € X"} C V. Conversely, we have
D,(20) # 0 for each o € V and since p,(«) = 0, the square bracket in Eq. (2.14) must have a singularity, which
proves V C {a; : i € X'} and hence Eq. (2.13a). Eq. (2.13b) is proved similarly. Since V and W have the
same number of elements, we see that X*, Y* have the same number of elements, which proves (1). Also (2)
has been proved on the way. Finally, from Eq. (2.14), we deduce that

le'/(bj_ai)zl, j€Y+,
iext

and the fact that X*, Y have the same number of elements and (2) show that x* is the solution of the
Cauchy system corresponding to a*, o™ and hence x* is given by Eq. (2.5), which here reads as Eq. (2.11a).
Eq. (2.11b) is proved similarly. O

Proposition 2.4. Let a,b € R" have each distinct components and satisfy condition (2.6). Then the Cauchy
matrix C corresponding to a,b is nonsingular and

= diag(x)C" diag(y),
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where x, y are the solutions of the Cauchy and Cauchy reciprocal systems corresponding to a, b, respectively.
Schechter (1959) and Vaviin (1997, Lemma 12) gives a generalization to the confluent Cauchy matrices.
(The formula also follows from the general result in Heinig and Rost (1984, Theorem 2.7, p. 161)) once the
solution of the Cauchy system is known (Finck et al., 1993, Corollary 3.1).

3. Symmetric rank 1 perturbations with prescribed spectrum

Direct vector notation is used throughout (Gurtin, 1981; Silhavy, 1997). In addition to the notation
explained in Introduction, we write u - w for the scalar product in Vect and recall that a second-order tensor
A is a linear transformation from Vect into Vect, with the product of two tensors defined as the compo-
sition of the linear transformations. Furthermore, Sym and Sym™ denote the sets of symmetric and positive
definite symmetric tensors, respectively, and Orth C Lin and Orth* C Lin the orthogonal and the proper
orthogonal groups. By a basis of Vect we always mean an orthonormal basis. If E = {¢;} is an basis and Q
an orthogonal matrix, then QE := {f,} denotes the basis given by

fi= Z Oyje;.
j=1

If E, F are two bases, we say that an orthogonal matrix Q realizes the passage from E to C if F = QE. We
have Q(RE) = (QR)E for any two orthogonal matrices Q, R and any basis E.

We say that A4 € Sym has the eigenvalues a € D" if the components of a are the eigenvalues of A oc-
curring with appropriate multiplicities and in a nonincreasing order; we also say that «a is the spectrum of A.
By a basis of eigenvectors of 4, we always mean a basis {e;} of eigenvectors of 4 ordered in such a way that
e; corresponds to the eigenvalue a;, with a; ordered as above. Thus, if the components of a are distinct, a
permutation of the elements of {e;} is no longer a basis of eigenvectors of 4. We say that G € Lin has the

singular values w € D" N R if vV GG" has the eigenvalues w. We say that A4 € Lin has distinct singular values
w € D" if w are the singular values of 4 and the components of w are distinct. The same convention applies
to the eigenvalues.

The tensor B € Lin is said to be a rank 1 perturbation of A € Lin if B= A + f ® b for some f, b € Vect.
The tensor B is said to be a symmetric rank 1 perturbation of A if B= A + m ® m for some m € Vect.

Proposition 3.1. If A € Sym has the spectrum a € D" then b € D" is the spectrum of some symmetric rank 1
perturbation of A if and only if a, b satisfy the interlacing inequalities (Silhavy, 1999, Section 4).

Proposition 3.2. Let A € Sym have the spectrum a € D"; B= A+ m® m, m € Vect; E be a basis of eigen-
vectors of A and m € R" the components of m in E and E be a basis of eigenvectors of B and i € R" the
components of m in E, then the following three conditions are equivalent:

(1) b € D" is the spectrum of B;

(2) the squares m* = (m3,...,m?) satisfy the elementary system corresponding to a,b; i.e.,

m; = wi\/;i, (3-1)

Sor some o € {—1,1}" and some nonnegative solution x € R" of the elementary system corresponding to a, b;
equivalently,
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where iy, 1y, . ..,i. is the increasingly ordered set of all beginnings of intervals of constancy of a, i,41 :=n+ 1,
and x is the particular solution of the elementary system corresponding to a, b,
(3) the squares m* = (i3, ... ,m>) satisfy the reciprocal elementary system corresponding to a,b; ie.,
f’h[ = T,‘\/_)Ti,

Sfor some © € {—1,1}" and some nonnegative solution y of the reciprocal elementary system corresponding to
a, b; equivalently

Z n%jg:yjd, o=1,...,s,

Jo-1<J< Js

where i, ja, ..., Js is the increasingly ordered set of all ends of intervals of constancy of b, jo, := 0, and y is the
particular solution of the reciprocal elementary system corresponding to a,b.
Moreover, if these conditions are satisfied, then in E, B is represented by the matrix

B := diag(a) + wv/x ® wy/x, (3.2)

where x € R" is the nonnegative solution of the elementary system corresponding to a,b as in (2) and in E, Ais
represented by the matrix

A4 := diag(b) — 1/y @ 1/,

where y € R" is the nonnegative solution of the reciprocal elementary system corresponding to a,b as in (3).
Proof. This follows from Silhavy (1999, Proposition 4.2). O

Remark 3.3. If the spectrum a of A € Sym has distinct components and if b € D" has distinct components and
is such that a, b satisfy the interlacing inequalities and condition (2.6) then there are 2"~ different symmetric
rank 1 perturbations B of A with the spectrum b.

Proof. Under the hypotheses, the elementary system corresponding to a, b has a unique solution x and the
components of x are strictly positive. Thus, Eq. (3.1) gives 2" different values of m that lead to B with the
spectrum b. The assertion then follows from the immediate fact that A + m®@m = A + n® n for some
m,n € Vect if and only if eitherm=norm=—n. O

Let us show that in an appropriately chosen basis of eigenvectors of A, the components of m are given by
Eq. (3.1) with o = (1,...,1) € {—1,1}" and with x the particular solution of the elementary system cor-
responding to a, b.

Remark 3.4. If A, B € Sym have the spectra a, b, respectively, and B is a symmetric rank 1 perturbation of A,
then there exists a basis E of eigenvectors of A such that the components m of m in E are m; = \/x; and the
matrix B of B in E is

B = diag(a) + vx ® V/x, (3.3)

where x is the particular solution (2.4) of the elementary system corresponding to a,b.

Proof. Indeed, one can always find a basis of eigenvectors of 4 such that the component m; of m in this basis
are nonzero only if 7 is the beginning of an interval of constancy of a. Then m? necessarily coincides with x
and hence we have Eq. (3.2) for some w € {—1,1}". An appropriate change of the signs of the elements of
this basis then leads to a basis in which Eq. (3.3) holds. O
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Let us now proceed to the diagonalization of the perturbed transformation. Let

1 iz,
Pii= -1 ifi<j.

Theorem 3.5. Let a, b satisfy the interlacing inequalities, let x,y be the particular solutions of the elementary
and reciprocal elementary systems corresponding to a,b, let w € {—1,1}", define B by Eq. (3.2), let
X, X" Y, Y* and s be as in Proposition 2.3, and define an n by n matrix Q by

OV (i, ) € X x YT,

bj — a;
0y = WipySiy if (i) € X0 x Y, (3.4)
0 otherwise,

and note that Proposition 2.3(2) guarantees that the denominator in Eq. (3.4) (first equation) is nonzero.
Then Q is orthogonal and

B = Qdiag(h)Q", (3.5a)

VX = O\/y. (3.5b)
If additionally a,b € D" have each distinct components and satisfy condition (2.6) then

0 = diag(wy/F)C" diag(y/7), (3.6)

where C is the Cauchy matrix corresponding to a,b.

The matrix Q with various choices of a,b and with w = (1,...,1) € {—1,1}" will play important role in the
description of the general rank 1 perturbations in Section 4, and we write QO = Q(a, b).

Proof. To simplify notation, let w = (1,...,1). It is convenient to consider first the nondegenerate case
mentioned at the end of the theorem. Thus let a,b have each distinct components and satisfy condition
(2.6), which by Egs. (2.5) and (2.10) implies that all the components of x and y are positive. Let Q be given
by Egs. (3.5a) and (3.5b). The inversion formula in Proposition 2.4 can be rewritten as

(diag(y/»)Cdiag(vx)) ' = diag(vx)C" diag(y/7),

ie., (QT)_1 = Q, which proves that Q is orthogonal. Furthermore, we have
ain/Xin/ Vi Xi\/V Ain/Xin/V )
(BO)u = b\k/i a; “+ J_Z b:— 2 b\,/_ S Vo = (Qdiag(b))y,
'j k

where we have used that x satisfies the Cauchy system. This proves Eqs. (3.5a) and (3.5b) is proved sim-
ilarly. In the general case, let ¢ be the number of elements of X*. Let R(X") denote the z-dimensional space
of all sequences ¢ = {& € R : i € X"} indexed by the indices from the set X", let M(X") denote the #*-
dimensional space of all matrices I' = [I'; € R : i,j € X*] indexed by the indices from the set X*, and
let finally M(X",Y") be the matrices with the first index from X" and the second from Y*. Let
at, xt € XT, b*, y* € YT be as in Proposition 2.3, let B" € M(X") be defined by

* = diag(a®) + Vxt @ Va+

and let 0" € M(X",Y") be defined by O; = Q;;, i € X, j € Y*, where Q is as in Eq. (3.6). By Proposition
2.3, the pair at, b™ satisfies the hypotheses of the special case and the matrix Q is O", from which we learn
that
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B* = Qtdiag(h")0'", Vxt =0"\/y,

and Q% is orthogonal. The last implies that also Q is orthogonal and that it satisfies Egs. (3.5a) and
(3.5p). O

Remark 3.6. (1) In the general degenerate case, the diagonalizing matrix is not unique, and in particular, any
orthogonal matrix in the block X° x Y° would lead to a matrix Q satisfying Egs. (3.5a) and (3.5b). The form
(3.4) (second equation) is to make a unique choice, with s obviously the most natural. The occurrence of p;; in
Eq. (3.4) (second equation) is a convenient choice as seen from the following assertion: If o = (1,...,1) then
the elements of Q are nonpositive above the main diagonal and nonnegative on or below the main diagonal. This
follows from Eq. (3.4), the interlacing inequalities, and the definition of p.

(2) Example: In the situation of Theorem 3.5, let o = (1,...,1), let a € D" have distinct components, let
by > ay and define by = a;_y for k=2,...,n. Then b € D" and a,b satisfy the interlacing inequalities. One
finds that xy, =x; =+ =x,.1=0,x,=b1—a, >0,y =b—a,, n="---=y,=0,

Xo={1,....n—=1}, Xt={n}, Y'={2,....n}, Y ={1}, s(i)=i-1, ieY,

0 -1 0 0

0 0 -1 0
0= ;

0 0 0 -1

1 0 O

B = diag(a) + vx ® Vx = diag(a;,a,...,a, 1,b1) and Q'BQ = diag(bhy,ay,...,a, 1)

4. Rank 1 perturbations with prescribed singular values

We consider a general rank 1 perturbation G = F + f ® n of F € Lin, det F # 0, and assume throughout
that n € Sph. With this choice of n, the vector f is called the amplitude of G. In view of the polar de-
composition theorem it suffices to consider the case when F =V € Sym™. The pair w,v, where
w,v € D" N R is said to satisfy the bilateral interlacing inequalities if

Wy Z 0y, U1 Z W2 203, .., U1 2 Wy (4.1)
If the pair w,v satisfies the bilateral interlacing inequalities then also the pair v, w satisfies the bilateral

interlacing inequalities.

Proposition 4.1. If V € Sym™ has the eigenvalues v € D" "R’ then a necessary and sufficient condition that
we D"NRY, be the singular values of some rank 1 perturbation of V is that w,v satisfy the bilateral in-
terlacing inequalities (Silhavy, 1999, Section 4).

In the rest of the paper, V is always a tensor in Sym™ and v is its spectrum; moreover, let
D=V—Vn® Vn, (4.2)

where V, n € Sph have the current local meaning specified by the surrounding text. In the same situation,
let » € D" MR’ be an n-tuple such that 4? is the spectrum of D, and X,y the particular solutions of the
elementary and reciprocal elementary systems corresponding to 4%, v?.
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Lemma 4.2. (1) If n € Sph then D is positive semidefinite, 0 is its eigenvalue corresponding to the eigenvector
V-'nand h; > 0 for all i, 1 <i < n; moreover,
hy.. h,
Vln| = (4.3)
Up...0,
(2) a necessary and sufficient condition that W e D", where h € D" N R, is the spectrum of D for some
n € Sph is that h, = 0 and v, h satisfy the interlacing inequalities.

Proof. (1) If x € Vect the Schwarz’s inequality implies
Dx - x=V>x-x— (n- Vx)2 >V’x-x— |Vx|2 =0,

which proves the positive semidefiniteness of D. The assertion that ¥ ~'n is an eigenvector corresponding to
0 is immediate. To prove Eq. (4.3), let us calculate cof D in two ways. First, since 4, = 0, in the basis of
eigenvectors of D, cof D is represented by diag(0,...,0, [A; ---h,_1]°); since the normalized eigenvector
corresponding to 4, = 0 is ¥ 'n/|V"'n| one finds that

Ving v
cof D = (hy ... h, ) 22 1 (4.4)
[V nl
On the other hand, D = V(1 — n® n)V and hence,
cof D = cof Vcof (1 —n@n)cof V = (det V)’V 'n@nV~" = (det V)’V 'n@nV'n, (4.5)

and a comparison of Egs. (4.4) and (4.5) gives Eq. (4.3).

(2): If 4% is the spectrum of D then /, = 0 follows from (1) and since V* is a symmetric rank 1 per-
turbation of D, v?, h” satisfy the interlacing inequalities. Conversely, if # € D" satisfies the conditions stated
in (2), then A* is the spectrum of some symmetric rank 1 perturbation D of ¥? of the form D :=
V:—m®m, where m¢c Vect. As h, =0, one has det D =det(V’—me@m)=0, ie, det V*(1—
V~=m-m) = 0. This gives |V "'m|* = 1 and setting n := ¥ "'mone hasn € Sphand D = V> — Vn® Vn. O

We shall use the identity
GG =V 4+ (f+Vn)@(f+Vn)— Vn® Vn; (4.6)

to determine all rank 1 perturbations G = V + f ® n with the prescribed singular values. That identity
shows that GG" is a superposition of two symmetric rank 1 perturbations of ¥ so that the results of
Section 3 will be applicable. The following theorem describes the set of all rank 1 perturbations of a general
positive definite tensor, including the amplitude and the polar decomposition. It deals with a general,
possibly degenerate case. The result simplifies in the nondegenerate case as the treatment that follows
shows.

We say that a basis E = {e;} is a basis of eigenvectors of V special with respect to n if Q(%,v?)"E is a
basis of eigenvectors of D. When /£, v have each distinct components and condition (4.14) is satisfied, then
there are exactly two bases of eigenvectors of V special with respect to n, namely those in which either all
components of Vn are positive or all negative; see Remark 4.5. In the degenerate case, the components of n
in a special basis are all nonnegative or all nonpositive, but the notion of a special basis is more restrictive.
Recall the orthogonal matrix Q(a, b) defined after Theorem 3.5.

Theorem 4.3. Let v,w € D"NR"_, V € Sym™, n € Sph, f € Vect and set G =V + f @ n. Then

+4
(1) G has the singular values w if and only if k>, w? satisfy the interlacing inequalities and there exists a basis

E of eigenvectors of 'V special with respect to n such that the components f of f in E are given by
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f=—W+Qh *) Py, (4.7)

where V = diag(v), n are the components of n in E, x is the particular solution of the elementary system
corresponding to h>,w?, and P is an orthogonal matrix such that

P diag(h)P" = diag(h). (4.8)

If condition (1) is satisfied then
(2) in E, VGG" is represented by the matrix

H = S diag(w)ST, (4.9)

where S = Q(h2,v*)"PQ(h*,w?), and the polar decomposition of G = HR = RK is represented by G =
HR = RK, where

R=H"' [V(l —n®@n)+ Q) P/x® n},

. . (4.10)
K= [(1 —n@n)V +n® Q(h,1?) P\/)_C}H’l [V(l —n®@n)+ QA v*) P\/x®@n|;

(3) in an appropriate basis of eigenvectors of GG", the components f of f are given by
/F = - Vﬁ + \/)_/1

where V = ST diag(v)S, is the matrix of V in this basis, i = S™n are the components of n and y is the solution of
the reciprocal elementary system corresponding to h>,w*; the orthogonal tensor R from the polar decompo-
sition of G is represented by the matrix

R=diagw V(I -n®n)+y®i).

Since, for a fixed V, & is a function of n, the condition that 4*,w? satisfy the interlacing inequalities de-

termines all possible n for which there exists an f such that G has the singular values w.

Proof. (1) Let G have the singular values w. The tensor ¥ is a symmetric rank 1 perturbation of D. Let G be
any basis of eigenvectors of D and define E := Q(4?, v*)G. Then by Theorem 3.5, E is a basis of eigenvectors
of V¥ special with respect to n. By Eq. (4.6), GG is a rank 1 perturbation of D, and hence, first, 4%, w? satisfy
the interlacing inequalities and second, by Remark 3.4, there exists a basis G of eigenvectors of D such that
the components of ¢ := f + Vn in G are \/x. Let P denote the matrix of the passage from G to G so that
from the condition that both of them are bases of eigenvectors of D we have Eq. (4.8). Then Q(h?,1?)"P
realizes the passage from G to E and hence the components of ¢ in E are Q(h?,1?)"P\/x which gives Eq.
(4.7). Conversely, let there be a basis E of eigenvectors of V special with respect to n such that the com-
ponents of f are given as in (1). Then G = Q(4?, v*)E is a basis of eigenvectors of D. In G, D is represented
by diag (h?) and f by —Q(h?,v*)Vin + Py/x. Then GG" as in (4.6) is represented by diag(h?) + P\/x ® Py/x
and in the basis PG by diag(h*) + \/x @ v/x. The latter is a symmetric rank 1 perturbation of diag(4?) with
the spectrum w?.

(2): In the basis of eigenvectors of GG', VGG is represented by diag(w) and the matrix S realizes the
passage from the basis of eigenvectors of GG" to E, which proves Eq. (4.9). The rest is just a calculation
based on R=H 'Gand K = RTHR. [

Remark 4.4. In the situation and notation of Theorem 4.3, let G' have the singular values w. Then

(1) there exists a 0 € {—1,1} such that Pe, = oe, and in the basis E, either all components of n are non-
negative or nonpositive. In the first case, sgn det G = 9; in the second, sgn det G = —0;

(2) we have
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OOy n®n, n=sgndetG. (4.11)

R=H"W(I—-n®n)+n
Wp...w,

Proof. (1) the assertion Pe, = de, follows from Eq. (4.8) and the fact that /4, = 0 is a simple eigenvalue of D.
Let us prove the assertion about the components of n. Since Q(4, 02)T realizes the passage from the basis of
eigenvectors of V to the basis of eigenvectors of D and V~'n/|V'n| is an eigenvector of D corresponding to
the simple eigenvalue 4, = 0, we have

QU v YV 'n/|V'n| = ye, (4.12)
for some y € {—1,1}; then n = 9|V "'n|VQ(K2, 1) e,, i.c.,

n; = y|V-"nlv,Q(R*,v%),,
and it suffices to recall (see Remark 3.6(1)) that the last row of Q(42, v?) is nonnegative. The assertion about
the sign of determinant of G: By Eq. (4.7), we have

detG =det V(1 + V-'f@n) = detv[ (7, )T Pyx-Vn

and thus from Eq. (4.12) and Pe, = de,,
detG/det ¥V = [\/x-PTQ(K*, v} )V ""n] = 0|V "n| /x,.
Hence y0 determines the sign of the determinant of G.
(2) To prove Eq. (4.11), note that
U"l

f—i—Vn—ni

LW,
Indeed, applying ¥V 'n to Eq. (4.6) we obtain (f + Va)(f -V 'n+1) = GG"V'n and from det G =

det V(f -V 'n+1), further, f -V 'n4+1=nw,...w,/v,...v,. Comparing Eq. (4.13) with Eq. (4.7) one
sees that

GGV 'n. (4.13)

QA2 v?) P\/_—n " GGV =g U Ry

Wy, Wi ..o W,

and Eq. (4.10) reduces to Eq. 4.11). 0O

Remark 4.5. Let v have distinct components, n € Sph, and let E be any basis of eigenvectors. Then the
components of n in E are all nonzero if and only if the components of h are distinct and

If these conditions are satisfied then the components of X and y are all positive. Moreover, there are exactly two
bases of eigenvectors of V special with respect to n: that in which all components of n are positive and that in
which all components of n are negative.

Proof. Assume that the components of n in E are all nonzero. By Remark 3.4, there is a basis E, of ei-
genvectors of V such that the components of Vn are /y. Since V has a nondegenerate spectrum, the passage
from E to E, is realized by a diagonal matrix diag(w), o € {—1,1}", and thus /y = diag(w)diag(v)n # 0
where n are the components of n in E. Hence all the components of y are positive. Eq. (2.9) then shows that
Eq. (4.14) holds. Proposition 3.5(1) says that also all components of x are positive. Proposition 2.1(2) then
says that all i € {1,...,n} are the beginnings of an interval of constancy of h*> which proves that the
components of /1 are distinct. The converse implications are proved similarly. To show that there are exactly
two bases of eigenvectors of V special with respect to n let E;, E; be special bases, and let
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G, = QW3 )'E,, a=1,2, (4.15)

so that these are the bases of eigenvectors of D. Since the spectra of ¥ and D have distinct components, we
have E, = diag(n)E;, G, = diag(s)G; for some 5,0 € {—1,1}" and Eq. (4.15) provides

diag(o)Q(r*,v*)" = Q(K*,1?)" diag(n), ie., (oi — n,)Q(R’, vz)iTj =0. (4.16)

Combining Eq. (3.4) with the fact that X,y have all components strictly positive, one finds that
Q(A?, vz)ij # 0 for all i,j and hence.Eq. '(4.16) implies o; = ;. This implies that 5 is constant, i.e., either
n=(1,...,1) orn=(-1,...,—1), ie. either E, =E, or E; = —-E,. O

Proposition 4.6. In the situation of Theorem 4.3, assume additionally that v has distinct components and let E
be any basis of eigenvectors of V. If all components of n in E are nonzero then G has the singular values w if
and only if h*,w* satisfy the interlacing inequalities and there exist an w € {—1,1}" such that the components

fof f in E are given by

n (=1 iy [ pe(h2)p,e (2
—om Z( )" wjy [P (h7)p (hF) @17)

Gy

J=1

where n are the components of n in E. Moreover, these satisfy

ny = 0, e (62) i (1?) (4.18)

with some © € {—1,1}". By Remark 4.5, the denominators in the last two formulas are nonzero.

Proof. By Remark 4.5, there is a basis Ej special with respect to n in which the components of n are positive.
Let us first prove Eq. (4.17) in this basis. By Eq. (4.7), we have to evaluate Q(4?, vz)TP\/)_c. By Remark 4.5,
we have Eq. (4.14), the components of /4 are distinct, and X,y have all components different from 0, and
thus, we can use Eq. (3.6) to find

1 pie(v7)pa(hy)
B, o) = DR
Q(r*, %), W= d;(v¥)d;(h?) ’

x; = po () /di(*). (4.19)

Moreover, Eq. (4.8) implies that P = diag(w) for some w € {—1,1}". Then,

n (_l)nijwj ptz(hjz)pwz(hjz)
QU )'PVR), = eV e/, (4.20)

Jj=1

where we have used that (—1)"d,(h*) > 0. With our choice of itE,, we have

vy = £/ =pe () /(7). (4.21)

which gives Eq. (4.18) with 7 = (1,...,1); eliminating the second square root in Eq. (4.20) via Eq. (4.21)
then provides Eq. (4.17). To prove Eq. (4.17) and (4.18) in an arbitrary basis i¢E, it suffices to note that
itE = diag(z)itE, for some t € {—1, 1}" and to transform the components in itE, into the components in itE.
Under this operation, Eq. (4.17) remains invariant (with the same w) while Eq. (4.18) takes the general
form. O
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Remark 4.7. Consider the situation of Proposition 4.6.
(1) Let n be fixed and o, » € {—1,1}". If Eq. (4.17) with » and ® gives the same f'and w; # @, for some j
then h; = w; for some i; if

then w as in Eq. (4.17) is uniquely determined by f and independent of the choice of the basis of eigen-
vectors of V; moreover,

sgn det G = w,. (4.23)

Thus, in contrast to 7 as in Eq. (4.18), o cannot be transformed out. The reader is referred to Section 6.2,
where two different choices of w distinguish between Type I and Type II twins. To prove these assertions,
let us first show that w is uniquely determined by fin a fixed basis. Write Eq. (4.17) with @ and with @, then
subtract the equations, and cancel the nonzero factor v;n;. What results is an equation of the form C¢ = 0,
where C is the Cauchy matrix corresponding to 4%, v* and

(_1)"*,/((1)] - d)/) D2 (h_%)pwz (h?)
d;(h?) '

Under the hypotheses of Proposition 4.6, C is nonsingular by Proposition 2.4, and hence ¢ = 0. When
combined with p,. (hz) # 0 this gives (w; — @;)p,2 (h J) = 0. Thus, if Eq. (4.22) holds, we have the uniqueness
of w in a fixed bas1s Next, we invoke the independence of Eq. (4.17) of the basis of eigenvectors of V
demonstrated in the proof of Proposition 4.6. To prove Eq. (4.23), we take a basis of eigenvectors of V in
which the components of n are positive, use Remark 4.4(1) and note that 6 = w,.

(2) Since the n-tuple & with A, = 0 is a function of n, we see from Eq. (4.17) that there are 2" families of f
leading to rank 1 perturbations G with the prescribed singular values. These families are distinguished by o,
and for each fixed w, the family is parametrized by n. Of these 2" families, 2"~ lead to G with positive
determinant by Eq. (4.23). By (1), two families can intersect at those n for which some components of /
coincide with some components of w. In Sections 5 and 6, we shall give more explicit expressions of f as
functions of n when n =2 or 3.

éj:

The following proposition gives a tensor form of the above results. Let /;(4) be the kth principal in-
variant of 4 € Sym, i.e., I;(4) = S*(a), where a is the spectrum of A4, or equivalently, /;(A4) is defined by the
expansion

det(4 — z1) Z[ zeR. (4.24)

Let DI, (A) € Sym be the derivative of I, with respect to A. If we differentiate Eq. (4.24) with respect to 4, we
obtain

cof (4 — z1) ZD[ (4.25)

and this expansion determines DI;(A4) uniquely. In the basis of eigenvectors of A, DI;(A) is represented by
diag(VS*(a)).

Proposition 4.8. [n the situation of Proposition 4.6, if G has the singular values w, then

f+Vn= Z g DL(V?*)Vn, (4.26)

i=1
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where

8= Do) A0, e = \pueE) /oo,

Proof. Formula (4.17) can be written as

" wjc;
f+Vn= Zl Z (jhi]) cof (V> — ii1) Vn. (4.27)
=

Eliminating the cofactors from Eq. (4.27) via Eq. (4.25) provides Eq. (4.26). [O

5. Dimension two
The purpose of this section is specialize the results of Section 4 to the case n = 2. Let w € D* N [R{Z+ N
satisfy the bilateral interlacing inequalities
Wy 2 Uy, U1 =Wy,

and let us seek rank 1 perturbations of ¥V with the singular values w.

5.1. General solutions
Let the eigenvalues of ¥ be distinct and specialize the formulas of Proposition 4.8 assuming Eq. (4.14) to
hold. We have h = (hy, hy) where h, = 0 and write & for ;. From Eq. (4.3),
h =|(cof V)n|, (5.1)
and one finds that
1 [/ ww w? — ) (W} — 2
g =, gzzﬁ( lzwz—wﬂ/), v:=cl=\/(§ ooy = 1)

U103

and hence, from Eq. (4.26),

WiWy V-'n
= — ———— (1 —wy)Vn. 5.2
f (wz 0102 wl)’) |V*1n|2 ( w1y)Vn (52)

For a given n, there exists an f such that G has the singular values w if and only if 4%, w? satisfy the in-
terlacing inequalities which by Eq. (5.1) gives

Wy < |C0f Vl’l| <wy. (53)

Condition (4.14) holds if and only if n is not an eigenvector of V. To summarize, for a given n € Sph there
exists an f € Vect such that V + f ® n has the singular values w if and only if Eq. (5.3) holds; if this is the
case, and n is not an eigenvector of V, then f is given by Eq. (5.2) where w,,w, € {—1, 1} are arbitrary. In
the case det G > 0, i.e., w, = 1, the polar decomposition of G reads (Silhavy, 1998; Dacorogna and Tanteri,
1998) G = HR = RK where

1
K= (G'G +wwd), H=

— (GG™ + wiws1),
wi + wy w1+ wy
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1
R= V+wwmV '+ fon—vonV ' 'noV'f).

Wi +W2

5.2. Expressions in the basis of eigenvectors

Let V have distinct eigenvalues, let n € Sph, f € Vect, w € D*N [Ri ., and let E be any basis of eigen-
vectors of V. Then G := V + f ® n has the singular values w and positive determinant if and only if Eq.
(5.3) holds and the components of f in E are given by

fie (Wywavy — vlzz)nl + wvanr7 = (vywywy — vzzz)ng — @un ¥ (5.4)
with some w € {—1,1} where r = /(w} — h2)(h* — w,). If this condition holds then the rotation from the
polar decomposition theorem is represented by the matrix

(vlng + vzn%) (B + wiwy) + o(v; — va)nynyr

Cp =

Cr  —Sg h?(wy + w) ’
R= . wh 5.5
|:SR Cr :| where - (U] — Uz)(h2 + W1W2)}’l1i’l2 — (U(U]I’l% + Uzl/l%)r ( )
R hz(wl =+ W2)

If w has distinct components, then GG" is represented by S diag(w?)S, where

CU1)2W2}11\/W% —h? + Ulwll’lgx/hz — W%
Cg = ’
_ 2 )
s | s LiVA s i (5.6)
WU Wana\/ W] — h* — wivany\/h* — w3
- 2 > .2 ’
h2\/wiy —w;

Ss

G is represented by G = Sdiag(w)O, where

0= [gfo’ CSOO’} , (5.7a)
. _on/wi — 2+ ny\ /b — w3 (5.7b)
¢ wi — w3 ’ .
E _ niy/hr —wi — wny\/wi — h? (5.70)
’ - |
and H = VGG" is represented by
1 1 A
HZE(Wl +W2)I+§(W1 —Wz)[’u _,u/l} (5.8)
A (W} + wi)h* = 2wiw3] (vind — v3n}) + dawvivawiwan nor
Pom =) ’
. walwz(vfnﬁ — v3n})r — vivammy [(wh + wl)h? — 2wiw3]
h(wi —w3) '

Proof. Assume first that the components of w are distinct and that the components #; of n are both nonzero
in E. Then in some basis of eigenvectors of ¥ the components of n are positive and let us first determine the
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objects in this basis. The amplitude can be calculated via Eq. (4.17), with w; € {—1,1}, w, = 1;if we write
o for w;, we obtain Eq. (5.4). Further, in the notation of Theorem 4.3, we have P = diag(w, 1), and the
diagonalizing matrix from that theorem is S = Q(A%,v?)" PQ(h?,w?). Using n; > 0, n, > 0, one finds from
Eq. (3.6) that

Q(hz Uz)T :1{ vin Uznl} Q(hz w2) :; wiy/ —w% —WZ\/wf —n?
7 —vym viny | 7 hy/wh — w2 Lway/ws — 1> wiy/h—w3 |

and a calculation gives

S = {“’CS _SS} : (5.9)
wWSs Cg
where cg, sg are as above. If @ = —1 then S is improper orthogonal and it is noted that then S := SP is a

proper orthogonal diagonalizing matrix, i.e., GGTiz Sdiag(w?)ST. From Eq. (5.9), we find that S is given by
Eq. (5.6). To calculate H, we use H = Sdiag(w)S" and note that

diag(w) =w,I +w_J whereJ = {(1) _01 ], w, = %(w] +wy), w_o = %(wl —wy)

to obtain

H = Sdiag(w)ST = w, I +w_SJS" =w, I +w_S§*J (5.10)
since JST = §J. One finds that

@_ |4 —nu

s [# ;

and Eq. (5.10) leads to Eq. (5.8). We define O := S"R and note that with this definition G = Sdiag(w)O. In
the notation Eq. (5.7a), we have

co=S8"Rn-n, so=S8"Rn-n" where n* = (—ny,n). (5.11)
Using Egs. (4.10) and (3.5), one finds
m = STH'Q(1?,v*) P/x = diag(w™)STQ(#2,v*)" P diag(w™')/y

and a calculation gives

wh — h? h* — w3
m = L my = >
Wi —w; wp —w;

A combination with Eq. (5.11) gives Eq. (5.7a). Then R is calculated as the product R = SO which leads to
Eq. (5.5). Let us now consider an arbitrary basis E of eigenvectors of V| let n, n, be the components of n in
E and denote o; = sgn ny, 9, = sgn ny. Then in the basis E, = diag(o)E the components of n are |ny|, |n,],
and the above expressions with n;, n, replaced by |n], |n,| give the objects in E,. These may be transformed
back to E. It turns out that the expressions for f, R are still of the form (5.4) and (5.5) except that one has to
redefine o to be now we,0,. On the contrary, S, O transform to ¢,5’, 6,0 where ', O’ are as in Eqgs. (5.6)
and (5.7a)—(5.7¢c) with the new . But then also §', O’ provide G = S'diag(w)O’ in the basis E, and thus
redefining S,0 to be §',0 we have Egs. (5.6) and (5.7a)~(5.7c). To summarize, we have proved the
proposition under the additional restriction that the components of w are distinct and the components of
n both different from 0. For the remaining cases, one has to use Theorem 4.3 and it is found that the results
hold also in this case. [
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As an illustration, let ¥ have distinct eigenvalues and determine all £, n, R € Orth™ such that ©
V+feon=R.

We apply Section 5.2 with w = (1, 1). Condition (5.3) gives # = 1, and the interlacing inequalities for 4*, v
give that v; > 1 > v, which is a necessary and sufficient condition for the solution to exist. The case v; = v
being trivial, we assume v; > v,. The equality 2 = 1 gives v{n3 4+ v3n? = 1 from which

vl —1 1 -0}
nm=1\\> " Ny = T4 5
=0 =0

for some 71,7, € {—1,1}. Then formulas (5.4) reduce to

2 2
Jv; —1 1 —v3

= —11(vy —v o =1(v; — v
fi 1( 1 2) v% Uga ) 2( 1 2) v% vg’

1 2D (1 =02
—|-171027 SR = 11T (v] )( Uz).
U+ 02 U+ 0

crR —S
R=|"" R where ¢ =
SR Cr

Thus, there are four solutions n,f, R; however, only two of them are substantially different, since any
solution n, f, R produces a new solution of the form —n, —f, R. Note also that the factor w has disappeared,
the two families coincide and each of these families degenerate to a single point.

6. Dimension three

The purpose of this section is specialize the results of Section 4 to the case n=3. Let V and
we DN Ri . be given. The bilateral interlacing inequalities read

Wi Z Uy, U ZWy 203, Uy =Ws.

6.1. General solutions

We use Propositions 4.6 and 4.8 and assume that their hypotheses are satisfied. Formula (4.26) reads

f=(g1+gztrV2—1)Vn+ng3n+§3Wa (6.1)
n
where
o a)lclh% — 60202}15 _ wWiC1 — W _ wlclhg — 6020211% W3WIWrW3
87w rk 0 BT T T om0 8T R 010203
and

1 = vaz(h%)/pLz(h%), € = \/pwz(h%)/pvz (h%)

The parameters 4, 4, can be calculated from n by

© Cf. Khachaturyan (1983, p. 176) and Ball and James (1987, Proposition 4).
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B4 =tV— |V, Kk = |cof Vn|,
which are obtained by taking the trace of Eq. (4.2) and by Eq. (4.3), respectively. Hence

=—|tr V" —|Vn|" £/ (tr V" — |Vn|")" — 4| cof Vn|"|. .
hfz; V:—|Va| V2 —|Va|’)* — 4| cof V|’ 6.2

Note that generally tr V> — |Vn|> = 2| cof Vn|; thus Eq. (6.2) gives two nonnegative numbers, which, being
the eigenvalues of V* — Vn ® Vn, satisfy automatically v, > h; > v, > hy > v;. Thus, for a given n, there
exists a f € Vect such that G = V + f ® n has the singular values w if and only if 4y, 4, given by Eq. (6.2)
satisfy

wy = hy Zwy = hy = ws, (6.3)

and if this is the case, then f is given by Eq. (6.1). For given ¥ and w, the system of inequalities (6.3)
determines a subset A of Sph of all possible n for which there exists an f such that G has the singular values
w. Note also that Eq. (6.1) may be further simplified by eliminating ¥ via the Cayley-Hamilton theorem.

6.2. Twinning
A tensor G € Lin with positive determinant is said to be a twin of V if G is a rank 1 perturbation of V

and G has the same singular values as V. Write G = V + f ® n. The basic assertion about twinning is that
each twin is either type I twin or a type II twin, ’ where by definition the type I twin satisfies

f=20v"'n/|V'n]* — Vn), (6.4)
and type II twin satisfies

n=200"f/ V11 = VEJIFP). (6.3)
Moreover, the polar decomposition of G is G = HR, where

H=SVS", R=ST (6.6)
where the tensors S, T € Orth" may be chosen as 180° rotations:

S=20®0—-1, T=2hoh—-1, §=T"=1, (6.7)

where the axes of rotation are determined as follows:

foratype [ twin o=V 'n/|V'n|, h=n;
for a type Il twin o =f/|f|, h=V'f/|[V'f|.

Let us derive these assertions by using the general solution, under the assumption that ¥ has distinct ei-
genvalues and condition (4.14) holds. In the present case w = v. Let us use the basis E of eigenvectors of V
in which the components of n are nonnegative. Denoting Q = Q(4?,1v?), P = diag(w), the diagonalizing
matrix S from Theorem 4.3 is found to be

S = QO diag(w)Q", hence, S=S5T, S§*=1I.

Since Q realizes the passage from E to the basis of eigenvectors of D, in E, D is represented by
D = Q diag(h?*)Q" and from this

SDS™ = QPQ"DOPQ" = QP diag(h*)PQ" = Q diag(h*)Q" = D,

7 Ericksen (1981, 1985) and Gurtin (1983).
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i.e., S commutes with D. Moreover, det G > 0 gives (see Remark 4.7(1)) w; = 1. We have x =X, y = y and
Vi =/y. Thus from Eq. (4.7), f = —Va+ QP\/x = —Vi+ QPQ"Q\/X = —Vn + S\/y = —Vi + SV, and
hence,

f=(E -0, (6.8)
which implies

Sf=(S*=8h=(1-8)f=—f. (6.9)
Furthermore,

SV='n/|V="n| = Q diag(w)Q"V'n/|V"'n| = Q diag(w)e; = Qwses = Qe = V"'n/|V " 'n|.

Thus, f/|f| and V~'n/|V~'n| are two normalized eigenvectors of the symmetric orthogonal matrix S
corresponding to the eigenvalues —1, 1. Hence, the system {P,, P>, P;}, where

fef VeV a
TR T pap

, P1 2:]7P27P3

is a complete system of eigenprojectors of S. Denoting the third eigenvalue of S by n € {—1, 1}, we have

fef V-'n@V-'n

S=nP—P,+P=nl—(n+1 + (1 - 6.10
ney 2 3=1 (n ) |f|2 ( ") |V*1n|2 ( )
Using Ov/x = OV = /7 = Vi, Eq. (4.11) reduces to
R=S[V'SV(I—-n®n)+n@n|. (6.11)
If n = —1, then by Eq. (6.10)
-1 -1
SZQM_I’ (6.12)

I
Eq. (6.8) leads to Eq. (6.4) and the resulting twin is type 1. With Eq. (6.12), one finds that for type I twin,

STV (I —n®n)=V(n®n—1I)and thus by Eq. (6.11), R = ST where T = 2n ® n — I; defining S = S, T = T,
we have Eqgs. (6.6) and (6.7) in this case. If = 1 then by Eq. (6.10),

s=1-2/%/

1P

S has a double eigenvalue 1 and a simple eigenvalue —1, with the corresponding eigenvector f. Since S
commutes with D, the eigenvector f corresponding to the simple eigenvalue of S must also be an eigenvector
of D, i.e.,

(V= Vn@Va)f =if (6.13)
for some A € R. Multiplying Eq. (6.8) by f and using Eq. (6.9), one obtains |f|2 = —2f - Vn; hence,
V2P = af, (6.14)

moreover, from det G = det V one obtains f - V~'n = 0. Multiplying Eq. (6.13) by ¥~2f and using the last
two formulas one finds that A = |f|*/[V~f]*. Inserting this value into Eq. (6.14) and rearranging, we obtain
Eq. (6.5) and the resulting twin is type II. Further,
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fev fen
-2 T2 T2
£ Lf]
=V(l—n@m+fe(n=2"f/[V7 /) = f @n (by Eq. (6.5))
=Vl —nen) =2f@V /v

SV(I-non) =V(1-n®n) +2(Vf - n)

and thus,

e vts
Vi

defining § = —S, T = —T, we have Egs. (6.6) and (6.7) in this case. Note also that for Type I twins, with

the knowledge w; = w, = —1,w; formula (6.1) leads directly to Eq. (6.4). It suffices to note that
cp=c;=1,and hence g, =—-1,2,=0,8; =2.

R=ST where T=1-—
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