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Abstract

Rank 1 connections, i.e., pairs F,G of tensors (matrices) di�ering by a rank 1 tensor, G � F � f 
 n, play an im-

portant role in the nonlinear elasticity and in particular in the theory of solid-to-solid phase transformations. If F, G are

rank 1 connected, G is said to be a rank 1 perturbation of F. This paper describes the set of all rank 1 perturbations of F
with prescribed singular values. In an n-dimensional space, this set is shown to consist of 2n families of dimension nÿ 1

and within each family, G and f may be expressed as functions of the unit vector n, given by explicit formulas. These are

then specialized to dimensions n � 2 and 3: Some illustrative examples are given. Ó 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Let Lin denote the linear space of all second-order tensors on an n-dimensional real vector space Vect
with scalar product. (If Vect is identi®ed with Rn, then Lin may be identi®ed with the set of all n by n
matrices.) The tensor G 2 Lin is said to be a rank 1 perturbation of the tensor F 2 Lin if G � F � f 
 n for
some f 2 Vect, n 2 Sph :� fn 2 Vect : jnj � 1g, with j � j the euclidean norm. In indices, Gij � Fij � f inj.
Rank 1 perturbations play important roles in the theory of coherent phase transitions in crystalline solids,
and, through the de®nition of rank 1 convexity, in the nonlinear (thermo) elasticity of isotropic materials. 1

The underlying reason is the Hadamard lemma for a continuous deformation with a discontinuity of the
deformation gradient across a singular surface S: The limiting values of the deformation gradients from the
two sides of S must be rank 1 connected.

In the last 15 years, a theory of martensitic transformations in crystalline materials based on energy
minimization has been intensively studied (Ball and James, 1987, 1992; Fonseca, 1987; Chipot and Kin-
derlehrer, 1988; Bhattacharya, 1991, 1992, 1993; Bhattacharya, 1994; Dolzmann and M�uller, 1995; Abey-
aratne et al., 1996; Ball and Carstensen, 1997). The microstructures can often be analysed by solving algebraic
problems of ®nding matrices on energy wells having appropriate rank 1 connections. Similarly, in the
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isotropic nonlinear elasticity, the rank 1 convexity notion and the associated rank 1 perturbations are helpful
in analysing stored energy functions (Ball, 1977) and in particular in the problems associated with the re-
laxation and rank 1 convexi®cation of the nonelliptic energy functions (Dacorogna, 1990; Kohn and Strang,
1983, 1986a,b,c; Dacorogna and Koshigoe, 1993; Buttazzo et al., 1994; Dacorogna and Tanteri, 1998).

Here, a more systematic approach to rank 1 perturbations is presented inasmuch as this paper describes
all rank 1 perturbations G of a given F subject to the condition that G has prescribed singular values. 2

Recall that the singular values of a tensor G are de®ned as the eigenvalues of
����������
GGT
p

arranged nonin-
creasingly, with appropriate multiplicities. In view of the polar decomposition theorem, it su�ces to
consider the case when F � V is positive de®nite symmetric. It turns out that if v � �v1; . . . ; vn� are the
singular values of F then w � �w1; . . . ;wn� are the singular values of some rank 1 perturbation of G if and
only if w; v satisfy the following system of inequalities

w1 P v2; v1 P w2 P v3; . . . ; vnÿ1 P wn;

which I propose to call bilateral interlacing inequalities (�Silhav�y, 1999). It is shown that for a given n-tuple
w � �w1; . . . ;wn� subject to the bilateral interlacing inequalities, and in the absence of degeneracies, the set of
all rank 1 perturbations G � V � f 
 n with the prescribed singular values w consists of 2n families in Lin,
each of dimension nÿ 1; parametrized by n from a certain set A � Sph that depends on V and w: For each of
the 2n families, the value f is a function of n given by rather explicit formulas involving the roots h1; . . . ; hnÿ1

of a certain polynomial of degree nÿ 1; related to the characteristic polynomial of V2 ÿ Vn
 Vn. It turns
out that provided these are known, all the substantial information about G is derivable from explicit for-
mulas. Such is the case of the amplitude f ; of the members R;H ;K of the polar decomposition
G � HR � RK , and of the diagonalization of H �

����������
GGT
p

in the basis of eigenvectors of V : For n � 2; 3 the
roots h1; . . . ; hnÿ1 are easily determined by V; n and the formulas become completely explicit.

The general rank 1 perturbations are approached through symmetric rank 1 perturbations B �
A�m
m; where A;B are symmetric and m 2 Vect. The polarization formula (4.6) shows that a general
rank 1 perturbation may be treated as a superposition of two symmetric rank 1 perturbations. Following an
earlier work (Donoghue, 1974), in �Silhav�y (1999), formulas for the components of m in the basis of ei-
genvectors of A have been derived, including the degenerate case. Here, I furthermore provide an or-
thogonal matrix giving the diagonalization of B in the basis of eigenvectors of A and apply these facts do
derive the results on the general rank 1 perturbations described above.

The results provide a simple way to the particular results known previously. I choose to illustrate that
brie¯y on the formulas for mechanical twinning 3 and on the rank 1 perturbations of identity, 4 playing an
important role in determining the orientation of the austenite/martensite interface, both classical and
nonclassical. 5

2. Elementary systems and Cauchy matrices

Let Dn � fx 2 Rn : x1 P � � � P xng; we furthermore denote by R��R��� the nonnegative (positive) half-
axis and write Rn

�; R
n
�� for the nth cartesian powers of R�; R��: Throughout, the indices i; j; k;m range the

interval f1; . . . ; ng unless stated otherwise. If a 2 Rn, we say that a has distinct components if ai 6� aj for all
i; j; i 6� j: We say that x 2 Rn is nonnegative (positive) if x 2 Rn

� �x 2 Rn
���: If a; b 2 Rn then ab denotes the n-

2 Rosakis (1990) gave a particular rank 1 perturbation with the prescribed singular values if n � 3; another set of particular rank 1

perturbations is given in (�Silhav�y, 1999) arbitrary dimension.
3 See Ericksen (1981, 1985) and Gurtin (1983).
4 See Khachaturyan (1983, p. 176) and Ball and James (1987, Proposition 4).
5 See Wechsler et al. (1953), Ball and James (1987) and Ball and Carstensen (1997).
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tuple ab � �a1b1; . . . ; anbn�. If f : R! R is a scalar-valued function of a scalar variable and a 2 Rn, then
f �a� denotes the n-tuple f �a� :� �f �a1�; . . . ; f �an��: In particular, a2 � �a2

1; . . . ; a2
n� and if a is nonnegative

then
���
a
p � � �����a1

p
; . . . ;

�����
an
p �: Furthermore, e1; . . . ; en denotes the canonical basis in Rn and fÿ1; 1gn

denotes
the set of all n-tuples x � �x1; . . . ;xn� where xi 2 fÿ1; 1g: For each a 2 Rn; pa denotes the polynomial

pa�z� �
Yn

i�1

�ai ÿ z� �
Xn

k�0

Sk�a��ÿz�nÿk
; z 2 R; �2:1�

where Sk is the kth elementary symmetric function of n variables,

S0�a1; . . . ; an� � 1; Sk�a1; . . . ; an� �
X

16 i1<���<ik 6 n

ai1 . . . aik ; a 2 Rn; k > 0:

For each a 2 Rn, we de®ne

dj�a� :�
Yn

i�1
i 6�j

�ai ÿ aj�:

Let S : Rn ! Rn be de®ned by S�a� � �S1�a�; . . . ; Sn�a��; a 2 Rn; and let rS�a� � �Mij� be the matrix of the
derivatives of S at a; where Mij � Si

j�a� :� oSi�a�=oaj:

2.1. Elementary systems

The elementary system corresponding to a; b 2 Rn is the linear system for the unknown x 2 Rn of the
form

S�b� ÿ S�a� � rS�a�x;
explicitly,

Sk�b� ÿ Sk�a� �
Xn

j�1

Sk
j �a�xj; k � 1; . . . ; n: �2:2�

The matrix rS�a� of the elementary system is nonsingular if and only if a has distinct components (�Silhav�y,
1999, Lemma 2.4); hence in this case, the system is uniquely solvable for each b 2 Rn: If some of the
components of a coincide, then the system is solvable only for certain b (�Silhav�y, 1999). However, for our
purposes it completely su�ces to describe the solution when a; b or b; a satisfy the interlacing inequalities.
We say that a; b 2 Dn satisfy the interlacing inequalities if

b1 P a1 P b2 P a2 P � � � P bn P an: �2:3�
If c 2 Rn and z 2 R, we denote by m�z; c�P 0 the multiplicity of z in the sequence c1; . . . ; cn: An index
i 2 f1; . . . ; ng is said to be the beginning of an interval of constancy of a 2 Dn if either i � 1 or i > 1 and
aiÿ1 > ai: An interval of constancy of a is an interval of positive integers of the form fj : i6 j < i� m�ai; a�g
where i is the beginning of an interval of constancy of a: The end of an interval of constancy of a is
iÿ 1� m�ai; a�: Note that if the components of a are distinct, then each i 2 f1; . . . ; ng is the beginning and
end of an interval of constancy of a:

Proposition 2.1. If a; b satisfy the interlacing inequalities then
(1) the elementary system corresponding to a; b has a particular solution given by

xj � �bj ÿ aj�
Y

i2P �j�

bi ÿ aj

ai ÿ aj
; where P �j� :� fi : ai 6� ajg; �2:4�
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(2) we have xj P 0 for each j; moreover, xj > 0 only if j is the beginning of an interval of constancy of a and
the end of an interval of constancy of b;

(3) the general solution is the sum of this particular solution with any n-tuple u 2 Rn such thatX
ic 6 j<ic�1

uj � 0; c � 1; . . . ; r;

where i1; i2; . . . ; ir is the increasingly ordered set of all beginnings of the intervals of constancy of a;
ir�1 :� n� 1; (and necessarily r is the number of all distinct values in the sequence a);

(4) if a has distinct components the elementary system corresponding to a; b has a unique solution x given by

xj � pb�aj�=dj�a�: �2:5�
Solution (2.4) is called the particular solution of the elementary system corresponding to a; b.

Proof. For the proof of (1), (3), (4), see (�Silhav�y, 1999, Section 3). Let us prove (2). If i is the beginning of an
interval of constancy of a with the interval of constancy fj : i6 j < m�ai; a�g and with the multiplicity
m�ai; a� > 1; one ®nds that the interlacing inequalities give bj � aj for all j; i < j < m�ai; a� and thus (2.5)
implies xj � 0 for all j; i < j < m�ai; a�: The assertion about the end of an interval of constancy is proved
similarly. �

In the absence of degeneracies, the elementary system reduces to a Cauchy system to be now introduced.
Let a; b 2 Rn be such that

bi 6� aj for all i; j 2 f1; . . . ; ng: �2:6�
If, moreover, a; b have each distinct components, the Cauchy matrix corresponding to a; b is the matrix
C � �Cij� with elements Cij � �bi ÿ aj�ÿ1

; and the Cauchy system corresponding to a; b (or corresponding to
the Cauchy matrix C) is the n by n linear system for the unknown x 2 Rn:Xn

j�1

Cijxj � 1; i � 1; . . . ; n: �2:7�

Proposition 2.2. If a; b 2 Rn have each distinct components and satisfy condition (2.6) then x 2 Rn is a solution
of the elementary system corresponding to a,b if and only if x is a solution of the Cauchy system corresponding
to a,b.

Proof. It has been shown in (�Silhav�y, 1999, Section 3), that x satis®es the elementary system corresponding
to a; b if and only if

pa�z�f �z� � pb�z�; z 2 R n fa1; . . . ; ang; �2:8�
where f is a rational function de®ned by

f �z� � 1�
Xn

j�1

xj=�aj ÿ z�:

Thus, if x is a solution of the elementary system, Eq. (2.8) implies pa�bi�f �bi� � pb�bi� � 0: By Eq. (2.6)
pa�bi� 6� 0 and so f �bi� � 0 which means that x satis®es the Cauchy system. The converse implication is
obtained by reversing the arguments. �

The reciprocal elementary system corresponding to a; b 2 Rn is the system
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S�b� ÿ S�a� � rS�b�y
for the unknown y 2 Rn: Since Sk�ÿb� � �ÿ1�kSk�b�; rSk�ÿb� � �ÿ1�k�1rSk�b�; the reciprocal elementary
system corresponding to a; b is the elementary system corresponding to ÿb;ÿa: If a; b satisfy the interlacing
inequalities, the reciprocal elementary system corresponding to a; b has a particular solution given by

yj � �bj ÿ aj�
Y

i2Q�j�

bj ÿ ai

bj ÿ bi
; where Q�j� :� fi : bi 6� bjg: �2:9�

Moreover, y is nonnegative and yj > 0 only if j is the beginning of an interval of constancy of a and the end
of an interval of constancy of b: If b has distinct components then Eq. (2.9) reduces to

yj � ÿpa�bj�=dj�b�: �2:10�
If a; b 2 Rn have each distinct components and satisfy condition (2.6) then the reciprocal elementary system
is equivalent to the reciprocal Cauchy system corresponding to a; b; which is the systemXn

j�1

Cjiyj � 1; i � 1; . . . ; n

for the unknown y 2 Rn: This is the Cauchy system corresponding to ÿb;ÿa:
The following proposition shows that the particular solution of the elementary system can always be

obtained by solving a `reduced' Cauchy system.

Proposition 2.3. Let a; b satisfy the interlacing inequalities, let x, y be the particular solutions of the ele-
mentary and reciprocal elementary systems corresponding to a,b, let

X0 � fi : xi � 0g; X� � fi : xi > 0g; Y0 � fi : yi � 0g; Y� � fi : yi > 0g;
and note that since x,y are nonnegative, we have X0 [ X� � Y0 [ Y� � f1; . . . ; ng: Then,
1. X0 and Y0 have the same number of elements and therefore there exists a unique increasing mapping s from

Y0 onto X0;
2. if �i; j� 2 X� � Y� then ai 6� bj and a� :� fai : i 2 X�g; b� :� fbi : i 2 Y�g have each distinct components;
3. the restrictions x� :� fxi : i 2 X�g; y� :� fyi : i 2 Y�g are the unique solutions of the Cauchy and recipro-

cal Cauchy systems corresponding to a�; b�; i.e.,

xi � pb��ai�=di�a��; i 2 X�; �2:11a�

yj � ÿpa��aj�=dj�b��; j 2 Y�; �2:11b�
where

pa��z� �
Y

k2X�
�ak ÿ z�; di�a�� �

Y
k2X� ; k 6�i

�ak ÿ ai�; i 2 X�;

and pb��z�; dj�b�� are de®ned analogously with X� replaced by Y�:

Proof. Let q be the greatest common divisor of pa; pb and denote by ~pa � pa=q; ~pb � pb=q: Let V; W be the
sets of all roots of ~pa; ~pb; respectively, taken with the corresponding multiplicities. The construction implies
that V; W have the same number of elements, counting the multiplicities. Let us show that the multiplicity
of each element of V and of each element of W is actually 1: To see it, let cc; 16 g6 p; be an increasingly
ordered set of all points common to a and b; i.e., cc are such that c1 < c2 < � � � < cp; for each c there exist i; j
such that cc � ai � bj; and if aj � bj for some i; j then cc � aj � bj for some c: Then,
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pa�z� � q0
a�z�

Yp

c�1

�cc ÿ z�mc ; pb�z� � q0
b�z�

Yp

c�1

�cc ÿ z�nc ; �2:12�

where mc � m�cc; a�; nc � m�cc; b�; and the polynomials q0
a; q

0
b are as follows. The set of roots of q0

a is exactly
the set of elements of a that are not in b and the set of roots of q0

b is exactly the set of elements of b that are
not in a; with the corresponding multiplicities. If n is an element of a not contained in b then the interlacing
inequalities imply that m�n; a� � 1; thus the multiplicity of the roots of q0

a is 1 and the same is true for q0
b:

Both q0
a; q0

b contribute to ~pa; ~pb: Finally, it remains to see how the products containing cc in Eq. (2.12) enter
~pa; ~pb: The interlacing inequalities imply that mc ÿ 16 nc6mc � 1; 16 c6 p; and thus, if mc � nc � 1; the
factor cc ÿ z (in the power 1) goes to ~pa but does not go to ~pb: If mc � nc then cc is neither the root of ~pa nor
the root of ~pb and if mc � nc ÿ 1; the factor cc ÿ z goes to ~pb but does not go to ~pa: This completes the proof
of the assertion about the simple multiplicity of the roots of ~pa; ~pb: Also the roots of ~pa; ~pb are disjoint.
Thus since there are no multiplicities in V; for each a 2 V there exists a unique i such that a � ai and i is the
beginning of an interval of constancy of a; and for each b 2W there exists a unique j such that b � bj and j
is the end of an interval of constancy of b: Let us show that

V � fai : i 2 X�g; �2:13a�

W � fbj : j 2 Y�g: �2:13b�
The elementary system reads (cf. the proof of Proposition 2.2)

pb�z� � pa�z� 1

"
�
X
i2X�

xi=�ai ÿ z�
#
; z 2 R n fai : i 2 X�g;

which is equivalent to

~pb�z� � ~pa�z� 1

"
�
X
i2X�

xi=�ai ÿ z�
#
; z 2 R n fai : i 2 X�g: �2:14�

Since each element of X� is the beginning of an interval of constancy of a (see Proposition 2.4) we have
ai 6� aj for each i; j 2 X�; i 6� j: Thus, the singularities in the square brackets in Eq. (2.14) cannot cancel
each other. The left-hand side of Eq. (2.14) has no singularities, and thus the absence of singularities of the
right-hand side implies that ~pa�ai� � 0 for each i 2 X� which gives fai : i 2 X�g � V: Conversely, we have
~pb�a� 6� 0 for each a 2 V and since ~pa�a� � 0; the square bracket in Eq. (2.14) must have a singularity, which
proves V � fai : i 2 X�g and hence Eq. (2.13a). Eq. (2.13b) is proved similarly. Since V and W have the
same number of elements, we see that X�; Y� have the same number of elements, which proves (1). Also (2)
has been proved on the way. Finally, from Eq. (2.14), we deduce thatX

i2X�
xi=�bj ÿ ai� � 1; j 2 Y�;

and the fact that X�; Y� have the same number of elements and (2) show that x� is the solution of the
Cauchy system corresponding to a�; b� and hence x� is given by Eq. (2.5), which here reads as Eq. (2.11a).
Eq. (2.11b) is proved similarly. �

Proposition 2.4. Let a; b 2 Rn have each distinct components and satisfy condition (2.6). Then the Cauchy
matrix C corresponding to a; b is nonsingular and

Cÿ1 � diag�x�CT diag�y�;
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where x; y are the solutions of the Cauchy and Cauchy reciprocal systems corresponding to a; b; respectively.
Schechter (1959) and Vav�r�õn (1997, Lemma 12) gives a generalization to the con¯uent Cauchy matrices.
(The formula also follows from the general result in Heinig and Rost (1984, Theorem 2.7, p. 161)) once the
solution of the Cauchy system is known (Finck et al., 1993, Corollary 3.1).

3. Symmetric rank 1 perturbations with prescribed spectrum

Direct vector notation is used throughout (Gurtin, 1981; �Silhav�y, 1997). In addition to the notation
explained in Introduction, we write u � w for the scalar product in Vect and recall that a second-order tensor
A is a linear transformation from Vect into Vect, with the product of two tensors de®ned as the compo-
sition of the linear transformations. Furthermore, Sym and Sym� denote the sets of symmetric and positive
de®nite symmetric tensors, respectively, and Orth � Lin and Orth� � Lin the orthogonal and the proper
orthogonal groups. By a basis of Vect we always mean an orthonormal basis. If E � feig is an basis and Q
an orthogonal matrix, then QE :� ff ig denotes the basis given by

f i �
Xn

j�1

Qijej:

If E;F are two bases, we say that an orthogonal matrix Q realizes the passage from E to C if F � QE: We
have Q�RE� � �QR�E for any two orthogonal matrices Q;R and any basis E:

We say that A 2 Sym has the eigenvalues a 2 Dn if the components of a are the eigenvalues of A oc-
curring with appropriate multiplicities and in a nonincreasing order; we also say that a is the spectrum of A:
By a basis of eigenvectors of A, we always mean a basis feig of eigenvectors of A ordered in such a way that
ei corresponds to the eigenvalue ai; with ai ordered as above. Thus, if the components of a are distinct, a
permutation of the elements of feig is no longer a basis of eigenvectors of A: We say that G 2 Lin has the

singular values w 2 Dn \ Rn
� if

����������
GGT
p

has the eigenvalues w: We say that A 2 Lin has distinct singular values
w 2 Dn if w are the singular values of A and the components of w are distinct. The same convention applies
to the eigenvalues.

The tensor B 2 Lin is said to be a rank 1 perturbation of A 2 Lin if B � A� f 
 b for some f ; b 2 Vect.
The tensor B is said to be a symmetric rank 1 perturbation of A if B � A�m
m for some m 2 Vect.

Proposition 3.1. If A 2 Sym has the spectrum a 2 Dn then b 2 Dn is the spectrum of some symmetric rank 1
perturbation of A if and only if a; b satisfy the interlacing inequalities (�Silhav�y, 1999, Section 4).

Proposition 3.2. Let A 2 Sym have the spectrum a 2 Dn; B � A�m
m; m 2 Vect; E be a basis of eigen-
vectors of A and m 2 Rn the components of m in E and Ê be a basis of eigenvectors of B and m̂ 2 Rn the
components of m in Ê; then the following three conditions are equivalent:

(1) b 2 Dn is the spectrum of B;
(2) the squares m2 � �m2

1; . . . ;m2
n� satisfy the elementary system corresponding to a; b; i.e.,

mi � xi
����
xi
p

; �3:1�
for some x 2 fÿ1; 1gn

and some nonnegative solution x 2 Rn of the elementary system corresponding to a; b;
equivalently,X

ic 6 j<ic�1

m2
j � xic ; c � 1; . . . ; r;
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where i1; i2; . . . ; ir is the increasingly ordered set of all beginnings of intervals of constancy of a; ir�1 :� n� 1;
and x is the particular solution of the elementary system corresponding to a; b;

(3) the squares m̂2 � �m̂2
1; . . . ; m̂2

n� satisfy the reciprocal elementary system corresponding to a; b; i.e.,

m̂i � si
����
yi
p

;

for some s 2 fÿ1; 1gn
and some nonnegative solution y of the reciprocal elementary system corresponding to

a; b; equivalentlyX
jdÿ1<j6 jd

m̂2
j � yjd ; d � 1; . . . ; s;

where j1; j2; . . . ; js is the increasingly ordered set of all ends of intervals of constancy of b; j0 :� 0; and y is the
particular solution of the reciprocal elementary system corresponding to a; b:

Moreover, if these conditions are satis®ed, then in E; B is represented by the matrix

B :� diag�a� � x
���
x
p 
 x

���
x
p
; �3:2�

where x 2 Rn is the nonnegative solution of the elementary system corresponding to a; b as in (2) and in Ê; A is
represented by the matrix

A :� diag�b� ÿ s
���
y
p 
 s

���
y
p

;

where y 2 Rn is the nonnegative solution of the reciprocal elementary system corresponding to a; b as in (3).

Proof. This follows from �Silhav�y (1999, Proposition 4.2). �

Remark 3.3. If the spectrum a of A 2 Sym has distinct components and if b 2 Dn has distinct components and
is such that a; b satisfy the interlacing inequalities and condition (2.6) then there are 2nÿ1 di�erent symmetric
rank 1 perturbations B of A with the spectrum b:

Proof. Under the hypotheses, the elementary system corresponding to a; b has a unique solution x and the
components of x are strictly positive. Thus, Eq. (3.1) gives 2n di�erent values of m that lead to B with the
spectrum b: The assertion then follows from the immediate fact that A�m
m � A� n
 n for some
m; n 2 Vect if and only if either m � n or m � ÿn: �

Let us show that in an appropriately chosen basis of eigenvectors of A; the components of m are given by
Eq. (3.1) with x � �1; . . . ; 1� 2 fÿ1; 1gn

and with x the particular solution of the elementary system cor-
responding to a; b:

Remark 3.4. If A;B 2 Sym have the spectra a; b; respectively, and B is a symmetric rank 1 perturbation of A,
then there exists a basis E of eigenvectors of A such that the components m of m in E are mi � ����

xi
p

and the
matrix B of B in E is

B � diag�a� � ���
x
p 
 ���

x
p
; �3:3�

where x is the particular solution (2.4) of the elementary system corresponding to a; b:

Proof. Indeed, one can always ®nd a basis of eigenvectors of A such that the component mi of m in this basis
are nonzero only if i is the beginning of an interval of constancy of a: Then m2 necessarily coincides with x
and hence we have Eq. (3.2) for some x 2 fÿ1; 1gn

: An appropriate change of the signs of the elements of
this basis then leads to a basis in which Eq. (3.3) holds. �
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Let us now proceed to the diagonalization of the perturbed transformation. Let

qij :� 1 if i P j;
ÿ1 if i < j:

�

Theorem 3.5. Let a; b satisfy the interlacing inequalities, let x; y be the particular solutions of the elementary
and reciprocal elementary systems corresponding to a; b; let x 2 fÿ1; 1gn

; de®ne B by Eq. (3.2), let
X0; X�; Y0; Y� and s be as in Proposition 2.3, and de®ne an n by n matrix Q by

Qij �
xi

�������
xiyj
p

bj ÿ ai
if �i; j� 2 X� � Y�;

xiqijdi;s�j� if �i; j� 2 X0 � Y0;
0 otherwise;

8>><>>: �3:4�

and note that Proposition 2.3(2) guarantees that the denominator in Eq. (3.4) (®rst equation) is nonzero.
Then Q is orthogonal and

B � Qdiag�b�QT; �3:5a�

x
���
x
p � Q

���
y
p

: �3:5b�
If additionally a; b 2 Dn have each distinct components and satisfy condition (2.6) then

Q � diag�x ���
x
p �CT diag� ���yp �; �3:6�

where C is the Cauchy matrix corresponding to a; b:

The matrix Q with various choices of a; b and with x � �1; . . . ; 1� 2 fÿ1; 1gn
will play important role in the

description of the general rank 1 perturbations in Section 4, and we write Q � Q�a; b�:

Proof. To simplify notation, let x � �1; . . . ; 1�: It is convenient to consider ®rst the nondegenerate case
mentioned at the end of the theorem. Thus let a; b have each distinct components and satisfy condition
(2.6), which by Eqs. (2.5) and (2.10) implies that all the components of x and y are positive. Let Q be given
by Eqs. (3.5a) and (3.5b). The inversion formula in Proposition 2.4 can be rewritten as

diag� ���yp �C diag� ���xp �ÿ �ÿ1 � diag� ���xp �CT diag� ���yp �;
i.e., �QT�ÿ1 � Q; which proves that Q is orthogonal. Furthermore, we have

�BQ�ik �
ai
����
xi
p ����

yk
p

bk ÿ ai
� ����

xi
p Xn

j�1

xj
����
yk
p

bk ÿ aj
� ai

����
xi
p ����

yk
p

bk ÿ ai
� ����

xi
p ����

yk
p � �Qdiag�b��ik;

where we have used that x satis®es the Cauchy system. This proves Eqs. (3.5a) and (3.5b) is proved sim-
ilarly. In the general case, let t be the number of elements of X�: Let R�X�� denote the t-dimensional space
of all sequences n � fni 2 R : i 2 X�g indexed by the indices from the set X�; let M�X�� denote the t2-
dimensional space of all matrices C � �Cij 2 R : i; j 2 X�� indexed by the indices from the set X�; and
let ®nally M�X�;Y�� be the matrices with the ®rst index from X� and the second from Y�: Let
a�; x� 2 X�; b�; y� 2 Y� be as in Proposition 2.3, let B� 2M�X�� be de®ned by

B� � diag�a�� �
�����
x�
p



�����
x�
p

and let Q� 2M�X�;Y�� be de®ned by Q�ij � Qij; i 2 X�; j 2 Y�, where Q is as in Eq. (3.6). By Proposition
2.3, the pair a�; b� satis®es the hypotheses of the special case and the matrix Q is Q�; from which we learn
that
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B� � Q� diag�b��Q�T;
�����
x�
p

� Q�
�����
y�

p
;

and Q� is orthogonal. The last implies that also Q is orthogonal and that it satis®es Eqs. (3.5a) and
(3.5b). �

Remark 3.6. (1) In the general degenerate case, the diagonalizing matrix is not unique, and in particular, any
orthogonal matrix in the block X0 � Y0 would lead to a matrix Q satisfying Eqs. (3.5a) and (3.5b). The form
(3.4) (second equation) is to make a unique choice, with s obviously the most natural. The occurrence of qij in
Eq. (3.4) (second equation) is a convenient choice as seen from the following assertion: If x � �1; . . . ; 1� then
the elements of Q are nonpositive above the main diagonal and nonnegative on or below the main diagonal. This
follows from Eq. (3.4), the interlacing inequalities, and the de®nition of q:

(2) Example: In the situation of Theorem 3:5, let x � �1; . . . ; 1�; let a 2 Dn have distinct components, let
b1 > a1 and de®ne bk � akÿ1 for k � 2; . . . ; n: Then b 2 Dn and a; b satisfy the interlacing inequalities. One
®nds that x1 � x2 � � � � � xnÿ1 � 0; xn � b1 ÿ an > 0; y1 � b1 ÿ an; y2 � � � � � yn � 0;

X0 � f1; . . . ; nÿ 1g; X� � fng; Y0 � f2; . . . ; ng; Y� � f1g; s�i� � iÿ 1; i 2 Y0;

Q �

0 ÿ1 0 � � � 0
0 0 ÿ1 � � � 0

..

.

0 0 0 � � � ÿ1
1 0 0 � � � 0

266664
377775;

B � diag�a� � ���
x
p 
 ���

x
p � diag�a1; a2; . . . ; anÿ1; b1� and QTBQ � diag�b1; a1; . . . ; anÿ1�:

4. Rank 1 perturbations with prescribed singular values

We consider a general rank 1 perturbation G � F � f 
 n of F 2 Lin; det F 6� 0; and assume throughout
that n 2 Sph: With this choice of n; the vector f is called the amplitude of G : In view of the polar de-
composition theorem it su�ces to consider the case when F � V 2 Sym�: The pair w; v; where
w; v 2 Dn \ Rn

� is said to satisfy the bilateral interlacing inequalities if

w1 P v2; v1 P w2 P v3; . . . ; vnÿ1 P wn: �4:1�
If the pair w; v satis®es the bilateral interlacing inequalities then also the pair v;w satis®es the bilateral
interlacing inequalities.

Proposition 4.1. If V 2 Sym� has the eigenvalues v 2 Dn \ Rn
�� then a necessary and su�cient condition that

w 2 Dn \ Rn
�� be the singular values of some rank 1 perturbation of V is that w; v satisfy the bilateral in-

terlacing inequalities (�Silhav�y, 1999, Section 4).

In the rest of the paper, V is always a tensor in Sym� and v is its spectrum; moreover, let

D � V2 ÿ Vn
 Vn; �4:2�
where V ; n 2 Sph have the current local meaning speci®ed by the surrounding text. In the same situation,
let h 2 Dn \ Rn

� be an n-tuple such that h2 is the spectrum of D, and �x; �y the particular solutions of the
elementary and reciprocal elementary systems corresponding to h2; v2:
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Lemma 4.2. (1) If n 2 Sph then D is positive semide®nite, 0 is its eigenvalue corresponding to the eigenvector
Vÿ1n and hi > 0 for all i; 16 i < n; moreover,

jVÿ1nj � h1 . . . hnÿ1

v1 . . . vn
; �4:3�

(2) a necessary and su�cient condition that �h2 2 Dn; where �h 2 Dn \ Rn
�; is the spectrum of D for some

n 2 Sph is that �hn � 0 and v; �h satisfy the interlacing inequalities.

Proof. (1) If x 2 Vect the Schwarz's inequality implies

Dx � x � V2x � xÿ �n � Vx�2 P V2x � xÿ jVxj2 � 0;

which proves the positive semide®niteness of D: The assertion that Vÿ1n is an eigenvector corresponding to
0 is immediate. To prove Eq. (4.3), let us calculate cof D in two ways. First, since hn � 0; in the basis of
eigenvectors of D; cof D is represented by diag�0; . . . ; 0; �h1 � � � hnÿ1�2�; since the normalized eigenvector
corresponding to hn � 0 is Vÿ1n=jVÿ1nj one ®nds that

cof D � �h1 . . . hnÿ1�2 Vÿ1n
 Vÿ1n

jVÿ1nj2 : �4:4�

On the other hand, D � V�1ÿ n
 n�V and hence,

cof D � cof V cof �1ÿ n
 n�cof V � �det V�2Vÿ1n
 nVÿ1 � �det V�2Vÿ1n
 nVÿ1n; �4:5�
and a comparison of Eqs. (4.4) and (4.5) gives Eq. (4.3).

(2): If �h2 is the spectrum of D then �hn � 0 follows from (1) and since V2 is a symmetric rank 1 per-
turbation of D; v2; �h2 satisfy the interlacing inequalities. Conversely, if �h 2 Dn satis®es the conditions stated
in (2), then �h2 is the spectrum of some symmetric rank 1 perturbation D of V2 of the form D :�
V2 ÿm
m, where m 2 Vect. As �hn � 0; one has det D � det �V2 ÿm
m� � 0; i.e., det V2�1ÿ
Vÿ2m �m� � 0: This gives jVÿ1mj2 � 1 and setting n :� Vÿ1m one has n 2 Sph and D � V2 ÿ Vn
 Vn: �

We shall use the identity

GGT � V2 � f� � Vn� 
 f� � Vn� ÿ Vn
 Vn; �4:6�
to determine all rank 1 perturbations G � V � f 
 n with the prescribed singular values. That identity
shows that GGT is a superposition of two symmetric rank 1 perturbations of V2 so that the results of
Section 3 will be applicable. The following theorem describes the set of all rank 1 perturbations of a general
positive de®nite tensor, including the amplitude and the polar decomposition. It deals with a general,
possibly degenerate case. The result simpli®es in the nondegenerate case as the treatment that follows
shows.

We say that a basis E � feig is a basis of eigenvectors of V special with respect to n if Q�h2; v2�TE is a
basis of eigenvectors of D: When h; v have each distinct components and condition (4.14) is satis®ed, then
there are exactly two bases of eigenvectors of V special with respect to n; namely those in which either all
components of Vn are positive or all negative; see Remark 4.5. In the degenerate case, the components of n
in a special basis are all nonnegative or all nonpositive, but the notion of a special basis is more restrictive.
Recall the orthogonal matrix Q�a; b� de®ned after Theorem 3.5.

Theorem 4.3. Let v;w 2 Dn \ Rn
��; V 2 Sym�; n 2 Sph; f 2 Vect and set G � V � f 
 n: Then

(1) G has the singular values w if and only if h2;w2 satisfy the interlacing inequalities and there exists a basis
E of eigenvectors of V special with respect to n such that the components f of f in E are given by
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f � ÿVn� Q�h2; v2�TP
���
x
p
; �4:7�

where V � diag�v�; n are the components of n in E; x is the particular solution of the elementary system
corresponding to h2;w2; and P is an orthogonal matrix such that

P diag�h�P T � diag�h�: �4:8�
If condition (1) is satis®ed then

(2) in E;
����������
GGT
p

is represented by the matrix

H � S diag�w�ST; �4:9�
where S � Q�h2; v2�TPQ�h2;w2�; and the polar decomposition of G � HR � RK is represented by G �
HR � RK, where

R � Hÿ1 V �1ÿ n
 n� � Q�h2; v2�TP
���
x
p 
 n

h i
;

K � �1ÿ n
 n�V � n
 Q�h2; v2�TP
���
x
ph i

Hÿ1 V �1ÿ n
 n� � Q�h2; v2�TP
���
x
p 
 n

h i
;

�4:10�

(3) in an appropriate basis of eigenvectors of GGT; the components �f of f are given by

�f � ÿ �V �n� ���
y
p

;

where �V � ST diag�v�S; is the matrix of V in this basis, �n � STn are the components of n and y is the solution of
the reciprocal elementary system corresponding to h2;w2; the orthogonal tensor R from the polar decompo-
sition of G is represented by the matrix

�R � diag�wÿ1�� �V �I ÿ �n
 �n� � ���
y
p 
 �n�:

Since, for a ®xed V ; h is a function of n; the condition that h2;w2 satisfy the interlacing inequalities de-
termines all possible n for which there exists an f such that G has the singular values w:

Proof. (1) Let G have the singular values w: The tensor V2 is a symmetric rank 1 perturbation of D: Let G be
any basis of eigenvectors of D and de®ne E :� Q�h2; v2�G: Then by Theorem 3.5, E is a basis of eigenvectors
of V special with respect to n: By Eq. (4.6), GGT is a rank 1 perturbation of D, and hence, ®rst, h2;w2 satisfy
the interlacing inequalities and second, by Remark 3.4, there exists a basis �G of eigenvectors of D such that
the components of c :� f � Vn in �G are

���
x
p
: Let P denote the matrix of the passage from G to �G so that

from the condition that both of them are bases of eigenvectors of D we have Eq. (4.8). Then Q�h2; v2�TP
realizes the passage from �G to E and hence the components of c in E are Q�h2; v2�TP

���
x
p

which gives Eq.
(4.7). Conversely, let there be a basis E of eigenvectors of V special with respect to n such that the com-
ponents of f are given as in (1). Then G � Q�h2; v2�E is a basis of eigenvectors of D: In G; D is represented
by diag �h2� and f by ÿQ�h2; v2�Vn� P

���
x
p
: Then GGT as in (4.6) is represented by diag�h2� � P

���
x
p 
 P

���
x
p

and in the basis PG by diag�h2� � ���
x
p 
 ���

x
p
: The latter is a symmetric rank 1 perturbation of diag�h2� with

the spectrum w2.
(2): In the basis of eigenvectors of GGT;

����������
GGT
p

is represented by diag�w� and the matrix S realizes the
passage from the basis of eigenvectors of GGT to E; which proves Eq. (4.9). The rest is just a calculation
based on R � Hÿ1G and K � RTHR: �

Remark 4.4. In the situation and notation of Theorem 4.3, let G have the singular values w: Then
(1) there exists a d 2 fÿ1; 1g such that Pen � den and in the basis E; either all components of n are non-

negative or nonpositive. In the ®rst case, sgn det G � d; in the second, sgn det G � ÿd;
(2) we have
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R � Hÿ1V �I ÿ n
 n� � g
v1 . . . vn

w1 . . . wn
HV ÿ1n
 n; g � sgn det G : �4:11�

Proof. (1) the assertion Pen � den follows from Eq. (4.8) and the fact that hn � 0 is a simple eigenvalue of D:
Let us prove the assertion about the components of n: Since Q�h2; v2�T realizes the passage from the basis of
eigenvectors of V to the basis of eigenvectors of D and Vÿ1n=jVÿ1nj is an eigenvector of D corresponding to
the simple eigenvalue hn � 0; we have

Q�h2; v2�V ÿ1n=jV ÿ1nj � cen �4:12�
for some c 2 fÿ1; 1g; then n � cjV ÿ1njV Q�h2; v2�Ten; i.e.,

ni � cjV ÿ1njviQ�h2; v2�ni;

and it su�ces to recall (see Remark 3.6(1)) that the last row of Q�h2; v2� is nonnegative. The assertion about
the sign of determinant of G : By Eq. (4.7), we have

det G � det V �1� Vÿ1f 
 n� � det V Q�h2; v2�TP
���
x
p � V ÿ1n

h i
;

and thus from Eq. (4.12) and Pen � den;

det G= det V � ���
x
p � P TQ�h2; v2�V ÿ1n
� � � cd jV ÿ1nj ����xn

p
:

Hence cd determines the sign of the determinant of G :
(2) To prove Eq. (4.11), note that

f � Vn � g
v1 . . . vn

w1 . . . wn
GGTVÿ1n: �4:13�

Indeed, applying Vÿ1n to Eq. (4.6) we obtain �f � Vn��f � Vÿ1n� 1� � GGTVÿ1n and from det G �
det V �f � Vÿ1n� 1�, further, f � Vÿ1n� 1 � gw1 . . . wn=v1 . . . vn: Comparing Eq. (4.13) with Eq. (4.7) one
sees that

Q�h2; v2�TP
���
x
p � g

v1 . . . vn

w1 . . . wn
GGTV ÿ1n � g

v1 . . . vn

w1 . . . wn
H 2V ÿ1n

and Eq. (4.10) reduces to Eq. (4.11). �

Remark 4.5. Let v have distinct components, n 2 Sph; and let E be any basis of eigenvectors. Then the
components of n in E are all nonzero if and only if the components of h are distinct and

hi 6� vj; 16 i; j6 n: �4:14�
If these conditions are satis®ed then the components of �x and �y are all positive. Moreover, there are exactly two
bases of eigenvectors of V special with respect to n: that in which all components of n are positive and that in
which all components of n are negative.

Proof. Assume that the components of n in E are all nonzero. By Remark 3.4, there is a basis E0 of ei-
genvectors of V such that the components of Vn are

���
�y
p

: Since V has a nondegenerate spectrum, the passage
from E to E0 is realized by a diagonal matrix diag�x�; x 2 fÿ1; 1gn

; and thus
���
�y
p � diag�x�diag�v�n 6� 0

where n are the components of n in E: Hence all the components of �y are positive. Eq. (2.9) then shows that
Eq. (4.14) holds. Proposition 3.5(1) says that also all components of �x are positive. Proposition 2.1(2) then
says that all i 2 f1; . . . ; ng are the beginnings of an interval of constancy of h2 which proves that the
components of h are distinct. The converse implications are proved similarly. To show that there are exactly
two bases of eigenvectors of V special with respect to n let E1;E2 be special bases, and let
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Ga :� Q�h2; m2�TEa; a � 1; 2; �4:15�
so that these are the bases of eigenvectors of D: Since the spectra of V and D have distinct components, we
have E2 � diag�g�E1; G2 � diag�r�G1 for some g; r 2 fÿ1; 1gn

and Eq. (4.15) provides

diag�r�Q�h2; v2�T � Q�h2; v2�T diag�g�; i:e:; �ri ÿ gj�Q�h2; v2�Tij � 0: �4:16�
Combining Eq. (3.4) with the fact that �x; �y have all components strictly positive, one ®nds that
Q�h2; v2�Tij 6� 0 for all i; j and hence Eq. (4.16) implies ri � gj: This implies that g is constant, i.e., either
g � �1; . . . ; 1� or g � �ÿ1; . . . ;ÿ1�; i.e. either E1 � E2 or E1 � ÿE2: �

Proposition 4.6. In the situation of Theorem 4.3, assume additionally that v has distinct components and let E
be any basis of eigenvectors of V : If all components of n in E are nonzero then G has the singular values w if
and only if h2;w2 satisfy the interlacing inequalities and there exist an x 2 fÿ1; 1gn

such that the components
f of f in E are given by

fi � vini

Xn

j�1

�ÿ1�nÿjxj

����������������������������
pv2�h2

j �pw2�h2
j �

q
�v2

i ÿ h2
j �dj�h2�

24 ÿ 1

35; �4:17�

where n are the components of n in E: Moreover, these satisfy

ni � sivÿ1
i

�������������������������������
ÿph2�v2

i �=di�v2�
q

�4:18�

with some s 2 fÿ1; 1gn: By Remark 4.5, the denominators in the last two formulas are nonzero.

Proof. By Remark 4.5, there is a basis E0 special with respect to n in which the components of n are positive.
Let us ®rst prove Eq. (4.17) in this basis. By Eq. (4.7), we have to evaluate Q�h2; v2�TP

���
x
p
: By Remark 4.5,

we have Eq. (4.14), the components of h are distinct, and �x; �y have all components di�erent from 0, and
thus, we can use Eq. (3.6) to ®nd

Q�h2; v2�Tij �
1

h2
j ÿ v2

i

��������������������������������
ÿ ph2�v2

i �pv2�hj2�
di�v2�dj�h2�

s
; xj � pw2�h2

j �=dj�h2�: �4:19�

Moreover, Eq. (4.8) implies that P � diag�x� for some x 2 fÿ1; 1gn
: Then,

Q�h2; v2�TP
���
x
p� �

i
�
Xn

j�1

�ÿ1�nÿjxj

����������������������������
pv2�h2

j �pw2�h2
j �

q
�h2

j ÿ v2
i �dj�h2�

�������������������������������
ÿph2�v2

i �=di�v2�
q

; �4:20�

where we have used that �ÿ1�nÿjdj�h2� > 0: With our choice of itE0, we have

vini �
�������������������������������
ÿph2�v2

i �=di�v2�
q

; �4:21�

which gives Eq. (4.18) with s � �1; . . . ; 1�; eliminating the second square root in Eq. (4.20) via Eq. (4.21)
then provides Eq. (4.17). To prove Eq. (4.17) and (4.18) in an arbitrary basis itE, it su�ces to note that
itE � diag�s�itE0 for some s 2 fÿ1; 1gn

and to transform the components in itE0 into the components in itE:
Under this operation, Eq. (4.17) remains invariant (with the same x) while Eq. (4.18) takes the general
form. �
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Remark 4.7. Consider the situation of Proposition 4.6.
(1) Let n be ®xed and x; �x 2 fÿ1; 1gn

: If Eq. (4.17) with x and �x gives the same f and xj 6� �xj for some j
then hj � wi for some i; if

hi 6� wj; 16 i; j6 n; �4:22�
then x as in Eq. (4.17) is uniquely determined by f and independent of the choice of the basis of eigen-
vectors of V ; moreover,

sgn det G � xn: �4:23�
Thus, in contrast to s as in Eq. (4.18), x cannot be transformed out. The reader is referred to Section 6.2,
where two di�erent choices of x distinguish between Type I and Type II twins. To prove these assertions,
let us ®rst show that x is uniquely determined by f in a ®xed basis. Write Eq. (4.17) with x and with �x, then
subtract the equations, and cancel the nonzero factor vini: What results is an equation of the form Cn � 0,
where C is the Cauchy matrix corresponding to h2; v2 and

nj �
�ÿ1�nÿj�xj ÿ �xj�

����������������������������
pv2�h2

j �pw2�h2
j �

q
dj�h2� :

Under the hypotheses of Proposition 4.6, C is nonsingular by Proposition 2.4, and hence n � 0: When
combined with pv2�h2

j � 6� 0 this gives �xj ÿ �xj�pw2�h2
j � � 0: Thus, if Eq. (4.22) holds, we have the uniqueness

of x in a ®xed basis. Next, we invoke the independence of Eq. (4.17) of the basis of eigenvectors of V
demonstrated in the proof of Proposition 4.6. To prove Eq. (4.23), we take a basis of eigenvectors of V in
which the components of n are positive, use Remark 4.4(1) and note that d � xn:

(2) Since the n-tuple h with hn � 0 is a function of n; we see from Eq. (4.17) that there are 2n families of f
leading to rank 1 perturbations G with the prescribed singular values. These families are distinguished by x,
and for each ®xed x, the family is parametrized by n: Of these 2n families, 2nÿ1 lead to G with positive
determinant by Eq. (4.23). By (1), two families can intersect at those n for which some components of h
coincide with some components of w: In Sections 5 and 6, we shall give more explicit expressions of f as
functions of n when n � 2 or 3:

The following proposition gives a tensor form of the above results. Let Ik�A� be the kth principal in-
variant of A 2 Sym, i.e., Ik�A� � Sk�a�, where a is the spectrum of A, or equivalently, Ik�A� is de®ned by the
expansion

det�Aÿ z1� �
Xn

i�0

Ii�A��ÿz�nÿi
; z 2 R: �4:24�

Let DIk�A� 2 Sym be the derivative of Ik with respect to A: If we di�erentiate Eq. (4.24) with respect to A, we
obtain

cof�Aÿ z1� �
Xn

i�1

DIi�A��ÿz�nÿi; �4:25�

and this expansion determines DIi�A� uniquely. In the basis of eigenvectors of A, DIi�A� is represented by
diag�rSk�a��:

Proposition 4.8. In the situation of Proposition 4.6, if G has the singular values w, then

f � Vn �
Xn

i�1

giDIi�V2�Vn; �4:26�
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where

gi �
Xn

j�1

xjcj�ÿh2
j �nÿi=dj�h2�; cj �

������������������������������
pw2�h2

j �=pv2�h2
j �

q
:

Proof. Formula (4.17) can be written as

f � Vn �
Xn

j�1

xjcj

dj�h2� cof�V2 ÿ h2
j 1�Vn: �4:27�

Eliminating the cofactors from Eq. (4.27) via Eq. (4.25) provides Eq. (4.26). �

5. Dimension two

The purpose of this section is specialize the results of Section 4 to the case n � 2: Let w 2 D2 \ R2
��

satisfy the bilateral interlacing inequalities

w1 P v2; v1 P w2;

and let us seek rank 1 perturbations of V with the singular values w:

5.1. General solutions

Let the eigenvalues of V be distinct and specialize the formulas of Proposition 4.8 assuming Eq. (4.14) to
hold. We have h � �h1; h2� where h2 � 0 and write h for h1: From Eq. (4.3),

h � j�cof V�nj; �5:1�
and one ®nds that

g1 � x1c; g2 � 1

h2

w1w2

v1v2

x2

�
ÿ x1c

�
; c :� c1 �

��������������������������������������
�w2

1 ÿ h2��w2
2 ÿ h2�

�v2
1 ÿ h2��v2

2 ÿ h2�

s
;

and hence, from Eq. (4.26),

f � x2

w1w2

v1v2

�
ÿ x1c

�
Vÿ1n

jVÿ1nj2 ÿ �1ÿ x1c�Vn: �5:2�

For a given n, there exists an f such that G has the singular values w if and only if h2;w2 satisfy the in-
terlacing inequalities which by Eq. (5.1) gives

w26 jcof Vnj6w2: �5:3�
Condition (4.14) holds if and only if n is not an eigenvector of V : To summarize, for a given n 2 Sph there
exists an f 2 Vect such that V � f 
 n has the singular values w if and only if Eq. (5.3) holds; if this is the
case, and n is not an eigenvector of V ; then f is given by Eq. (5.2) where x1;x2 2 fÿ1; 1g are arbitrary. In
the case det G > 0; i.e., x2 � 1; the polar decomposition of G reads (�Silhav�y, 1998; Dacorogna and Tanteri,
1998) G � HR � RK where

K � 1

w1 � w2

�GTG � w1w21�; H � 1

w1 � w2

�GGT � w1w21�;

958 M. �Silhav�y / International Journal of Solids and Structures 38 (2001) 943±965



R � 1

w1 � w2

�V � w1w2Vÿ1 � f 
 nÿ v1v2Vÿ1n
 Vÿ1f �:

5.2. Expressions in the basis of eigenvectors

Let V have distinct eigenvalues, let n 2 Sph; f 2 Vect; w 2 D2 \ R2
��; and let E be any basis of eigen-

vectors of V : Then G :� V � f 
 n has the singular values w and positive determinant if and only if Eq.
(5.3) holds and the components of f in E are given by

f1 � �w1w2v2 ÿ v1h2�n1 � xv1n2r
h2

; f2 � �v1w1w2 ÿ v2h2�n2 ÿ xv2n1r
h2

�5:4�

with some x 2 fÿ1; 1g where r �
��������������������������������������
�w2

1 ÿ h2��h2 ÿ w2�
p

: If this condition holds then the rotation from the
polar decomposition theorem is represented by the matrix

R � cR ÿsR

sR cR

� �
; where

cR �
v1n2

2 � v2n2
1

ÿ �
h2 � w1w2� � � x�v1 ÿ v2�n1n2r

h2�w1 � w2� ;

sR �
�v1 ÿ v2� h2 � w1w2� �n1n2 ÿ x v1n2

2 � v2n2
1

ÿ �
r

h2�w1 � w2� :

8>><>>: �5:5�

If w has distinct components, then GGT is represented by �S diag�w2��S, where

�S � cS ÿsS

sS cS

� �
;

cS � xv2w2n1

����������������
w2

1 ÿ h2
p

� v1w1n2

����������������
h2 ÿ w2

2

p
h2

����������������
w2

1 ÿ w2
2

p ;

sS � xv1w2n2

����������������
w2

1 ÿ h2
p

ÿ w1v2n1

����������������
h2 ÿ w2

2

p
h2

����������������
w2

1 ÿ w2
2

p ;

8>>><>>>: �5:6�

G is represented by G � �S diag�w�O, where

O � cO ÿsO;
sO cO

� �
; �5:7a�

cO � xn1

����������������
w2

1 ÿ h2
p

� n2

����������������
h2 ÿ w2

2

p����������������
w2

1 ÿ w2
2

p ; �5:7b�

sO � n1

����������������
h2 ÿ w2

2

p ÿ xn2

����������������
w2

1 ÿ h2
p����������������

w2
1 ÿ w2

2

p �5:7c�

and H �
����������
GGT
p

is represented by

H � 1

2
�w1 � w2�I � 1

2
�w1 ÿ w2� k l

l ÿk

� �
; �5:8�

k � �w
2
1 � w2

2�h2 ÿ 2w2
1w2

2

� ��v2
1n2

2 ÿ v2
2n2

1� � 4xv1v2w1w2n1n2r
h4�w2

1 ÿ w2
2�

;

l � 2
xw1w2�v2

1n2
2 ÿ v2

2n2
1�r ÿ v1v2n1n2 �w2

1 � w2
2�h2 ÿ 2w2

1w2
2

� �
h4�w2

1 ÿ w2
2�

:

Proof. Assume ®rst that the components of w are distinct and that the components ni of n are both nonzero
in E: Then in some basis of eigenvectors of V the components of n are positive and let us ®rst determine the
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objects in this basis. The amplitude can be calculated via Eq. (4.17), with x1 2 fÿ1; 1g; x2 � 1; if we write
x for x1, we obtain Eq. (5.4). Further, in the notation of Theorem 4.3, we have P � diag�x; 1�, and the
diagonalizing matrix from that theorem is S � Q�h2; v2�TPQ�h2;w2�: Using n1 > 0; n2 > 0; one ®nds from
Eq. (3.6) that

Q�h2; v2�T � 1

h
v1n2 v2n1

ÿv2n1 v1n2

� �
; Q�h2;w2� � 1

h
����������������
w2

1 ÿ w2
2

p w1

����������������
h2 ÿ w2

2

p
ÿw2

����������������
w2

1 ÿ h2
p

w2

����������������
w2

1 ÿ h2
p

w1

����������������
h2 ÿ w2

2

p� �
;

and a calculation gives

S � xcS ÿsS

xsS cS

� �
; �5:9�

where cS ; sS are as above. If x � ÿ1 then S is improper orthogonal and it is noted that then �S :� SP is a
proper orthogonal diagonalizing matrix, i.e., GGT � �S diag�w2��ST: From Eq. (5.9), we ®nd that �S is given by
Eq. (5.6). To calculate H , we use H � �S diag�w��ST and note that

diag�w� � w�I � wÿJ where J � 1 0
0 ÿ1

� �
; w� � 1

2
�w1 � w2�; wÿ � 1

2
�w1 ÿ w2�

to obtain

H � �S diag�w��ST � w�I � wÿ�SJ �ST � w�I � wÿ �S2J �5:10�
since J �ST � �SJ : One ®nds that

�S2 � k ÿl
l k

� �
and Eq. (5.10) leads to Eq. (5.8). We de®ne O :� �STR and note that with this de®nition G � �S diag�w�O: In
the notation Eq. (5.7a), we have

cO � �STRn � n; sO � �STRn � n? where n? � �ÿn2; n1�: �5:11�
Using Eqs. (4.10) and (3.5), one ®nds

m :� �STHÿ1Q�h2; v2�TP
���
x
p � diag�wÿ1��STQ�h2; v2�TP diag�wÿ1� ���yp

and a calculation gives

m1 � x

����������������
w2

1 ÿ h2

w2
1 ÿ w2

2

s
; m2 �

����������������
h2 ÿ w2

2

w2
1 ÿ w2

2

s
:

A combination with Eq. (5.11) gives Eq. (5.7a). Then R is calculated as the product R � �SO which leads to
Eq. (5.5). Let us now consider an arbitrary basis E of eigenvectors of V ; let n1; n2 be the components of n in
E and denote r1 � sgn n1; r2 � sgn n2: Then in the basis E0 � diag�r�E the components of n are jn1j; jn2j,
and the above expressions with n1; n2 replaced by jn1j; jn2j give the objects in E0: These may be transformed
back to E: It turns out that the expressions for f ;R are still of the form (5.4) and (5.5) except that one has to
rede®ne x to be now xr1r2: On the contrary, �S;O transform to r2

�S0; r2O0 where �S0;O0 are as in Eqs. (5.6)
and (5.7a)±(5.7c) with the new x: But then also �S0;O0 provide G � �S0diag�w�O0 in the basis E, and thus
rede®ning �S;O to be �S 0;O0 we have Eqs. (5.6) and (5.7a)±(5.7c). To summarize, we have proved the
proposition under the additional restriction that the components of w are distinct and the components of
n both di�erent from 0: For the remaining cases, one has to use Theorem 4.3 and it is found that the results
hold also in this case. �

960 M. �Silhav�y / International Journal of Solids and Structures 38 (2001) 943±965



As an illustration, let V have distinct eigenvalues and determine all f ; n;R 2 Orth� such that 6

V � f 
 n � R:

We apply Section 5.2 with w � �1; 1�: Condition (5.3) gives h � 1; and the interlacing inequalities for h2; v2

give that v1 P 1 P v2 which is a necessary and su�cient condition for the solution to exist. The case v1 � v2

being trivial, we assume v1 > v2: The equality h � 1 gives v2
1n2

2 � v2
2n2

1 � 1 from which

n1 � s1

��������������
v2

1 ÿ 1

v2
1 ÿ v2

2

s
; n2 � s2

��������������
1ÿ v2

2

v2
1 ÿ v2

2

s
for some s1; s2 2 fÿ1; 1g: Then formulas (5.4) reduce to

f1 � ÿs1�v1 ÿ v2�
��������������
v2

1 ÿ 1

v2
1 ÿ v2

2

s
; f2 � s2�v1 ÿ v2�

��������������
1ÿ v2

2

v2
1 ÿ v2

2

s
;

R � cR ÿsR

sR cR

� �
where cR � 1� v1v2

v1 � v2

; sR � s1s2

���������������������������������v2
1 ÿ 1��1ÿ v2

2�
p

v1 � v2

:

Thus, there are four solutions n; f ;R; however, only two of them are substantially di�erent, since any
solution n; f ;R produces a new solution of the form ÿn;ÿf ;R: Note also that the factor x has disappeared,
the two families coincide and each of these families degenerate to a single point.

6. Dimension three

The purpose of this section is specialize the results of Section 4 to the case n � 3: Let V and
w 2 D3 \ R3

�� be given. The bilateral interlacing inequalities read

w1 P v2; v1 P w2 P v3; v2 P w3:

6.1. General solutions

We use Propositions 4.6 and 4.8 and assume that their hypotheses are satis®ed. Formula (4.26) reads

f � �g1 � g2trV2 ÿ 1�Vn� g2V3n� �g3

Vÿ1n

jVÿ1nj2 ; �6:1�

where

g1 � x1c1h2
1 ÿ x2c2h2

2

h2
1 ÿ h2

2

; g2 � ÿx1c1 ÿ x2c2

h2
1 ÿ h2

2

; �g3 �
x1c1h2

2 ÿ x2c2h2
1

h2
1 ÿ h2

2

� x3w1w2w3

v1v2v3

;

and

c1 �
������������������������������
pw2�h2

1�=pv2�h2
1�

q
; c2 �

������������������������������
pw2�h2

2�=pv2�h2
2�

q
:

The parameters h1; h2 can be calculated from n by

6 Cf. Khachaturyan (1983, p. 176) and Ball and James (1987, Proposition 4).
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h2
1 � h2

2 � trV2 ÿ jVnj2; h2
1h2

2 � jcof Vnj2;
which are obtained by taking the trace of Eq. (4.2) and by Eq. (4.3), respectively. Hence

h2
1;2 �

1

2
trV2

�
ÿ jVnj2 �

�����������������������������������������������������������
�tr V2 ÿ jVnj2�2 ÿ 4j cof Vnj2

q �
: �6:2�

Note that generally tr V2 ÿ jVnj2 P 2jcof Vnj; thus Eq. (6.2) gives two nonnegative numbers, which, being
the eigenvalues of V2 ÿ Vn
 Vn; satisfy automatically m1 P h1 P m2 P h2 P m3: Thus, for a given n, there
exists a f 2 Vect such that G � V � f 
 n has the singular values w if and only if h1; h2 given by Eq. (6.2)
satisfy

w1 P h1 P w2 P h2 P w3; �6:3�
and if this is the case, then f is given by Eq. (6.1). For given V and w; the system of inequalities (6.3)
determines a subset A of Sph of all possible n for which there exists an f such that G has the singular values
w: Note also that Eq. (6.1) may be further simpli®ed by eliminating V3 via the Cayley±Hamilton theorem.

6.2. Twinning

A tensor G 2 Lin with positive determinant is said to be a twin of V if G is a rank 1 perturbation of V
and G has the same singular values as V: Write G � V � f 
 n: The basic assertion about twinning is that
each twin is either type I twin or a type II twin, 7 where by de®nition the type I twin satis®es

f � 2�Vÿ1n=jVÿ1nj2 ÿ Vn�; �6:4�
and type II twin satis®es

n � 2�Vÿ1f =jVÿ1f j2 ÿ Vf =jf j2�: �6:5�
Moreover, the polar decomposition of G is G � HR, where

H � �SV �ST; R � �S �T �6:6�
where the tensors �S; �T 2 Orth� may be chosen as 180� rotations:

�S � 2o
 oÿ 1; �T � 2h
 hÿ 1; �S2 � �T2 � 1; �6:7�
where the axes of rotation are determined as follows:

for a type I twin o � Vÿ1n=jVÿ1nj; h � n;
for a type II twin o � f =jf j; h � Vÿ1f =jVÿ1f j:

Let us derive these assertions by using the general solution, under the assumption that V has distinct ei-
genvalues and condition (4.14) holds. In the present case w � v. Let us use the basis E of eigenvectors of V
in which the components of n are nonnegative. Denoting Q � Q�h2; v2�; P � diag�x�; the diagonalizing
matrix S from Theorem 4.3 is found to be

S � Q diag�x�QT; hence; S � ST; S2 � I :

Since Q realizes the passage from E to the basis of eigenvectors of D; in E; D is represented by
D � Q diag�h2�QT and from this

SDST � QPQTDQPQT � QP diag�h2�PQT � Q diag�h2�QT � D;

7 Ericksen (1981, 1985) and Gurtin (1983).
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i.e., S commutes with D: Moreover, det G > 0 gives (see Remark 4.7(1)) x3 � 1: We have x � �x; y � �y and
Vn � ���

�y
p

: Thus from Eq. (4.7), f � ÿVn� QP
���
x
p � ÿVn� QPQTQ

���
�x
p � ÿVn� S

���
�y
p � ÿVn� SVn, and

hence,

f � �S ÿ I�Vn; �6:8�
which implies

Sf � �S2 ÿ S�Vn � �I ÿ S�f � ÿf : �6:9�
Furthermore,

SV ÿ1n=jV ÿ1nj � Q diag�x�QTV ÿ1n=jV ÿ1nj � Q diag�x�e3 � Qx3e3 � Qe3 � V ÿ1n=jV ÿ1nj:
Thus, f =jf j and V ÿ1n=jV ÿ1nj are two normalized eigenvectors of the symmetric orthogonal matrix S
corresponding to the eigenvalues ÿ1; 1: Hence, the system fP1; P2; P3g; where

P2 :� f 
 f

jf j2 ; P3 :� V ÿ1n
 V ÿ1n

jV ÿ1nj2 ; P1 :� I ÿ P2 ÿ P3

is a complete system of eigenprojectors of S: Denoting the third eigenvalue of S by g 2 fÿ1; 1g; we have

S � gP1 ÿ P2 � P3 � gI ÿ �g� 1� f 
 f

jf j2 � �1ÿ g� V
ÿ1n
 V ÿ1n

jV ÿ1nj2 : �6:10�

Using Q
���
x
p � Q

���
�x
p � ���

�y
p � Vn; Eq. (4.11) reduces to

R � S V ÿ1STV �I� ÿ n
 n� � n
 n
�
: �6:11�

If g � ÿ1; then by Eq. (6.10)

S � 2
V ÿ1n
 V ÿ1n

jV ÿ1nj2 ÿ I ; �6:12�

Eq. (6.8) leads to Eq. (6.4) and the resulting twin is type I. With Eq. (6.12), one ®nds that for type I twin,
STV �I ÿ n
 n� � V �n
 nÿ I� and thus by Eq. (6.11), R � ST where T � 2n
 nÿ I ; de®ning �S � S; �T � T ,
we have Eqs. (6.6) and (6.7) in this case. If g � 1 then by Eq. (6.10),

S � I ÿ 2
f 
 f

jf j2 ;

S has a double eigenvalue 1 and a simple eigenvalue ÿ1; with the corresponding eigenvector f : Since S
commutes with D; the eigenvector f corresponding to the simple eigenvalue of S must also be an eigenvector
of D; i.e.,

�V 2 ÿ Vn
 Vn�f � kf �6:13�
for some k 2 R: Multiplying Eq. (6.8) by f and using Eq. (6.9), one obtains jf j2 � ÿ2f � Vn; hence,

V 2f � 1
2
jf j2Vn � kf ; �6:14�

moreover, from det G � det V one obtains f � V ÿ1n � 0: Multiplying Eq. (6.13) by V ÿ2f and using the last
two formulas one ®nds that k � jf j2=jV ÿ1f j2: Inserting this value into Eq. (6.14) and rearranging, we obtain
Eq. (6.5) and the resulting twin is type II. Further,
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STV �I ÿ n
 n� � V �1ÿ n
 n� ÿ 2
f 
 Vf

jf j2 � 2�Vf � n� f 
 n

jf j2

� V �1ÿ n
 n� � f 
 n
�
ÿ 2V ÿ1f =jV ÿ1f j2

�
ÿ f 
 n �by Eq: �6:5��

� V �1ÿ n
 n� ÿ 2f 
 V ÿ1f =jV ÿ1f j2;
and thus,

R � ST where T � I ÿ 2
V ÿ1f 
 V ÿ1f

jV ÿ1f j2 ;

de®ning �S � ÿS; �T � ÿT , we have Eqs. (6.6) and (6.7) in this case. Note also that for Type I twins, with
the knowledge x1 � x2 � ÿ1;x3 formula (6.1) leads directly to Eq. (6.4). It su�ces to note that
c1 � c2 � 1, and hence g1 � ÿ1; g2 � 0; �g3 � 2:
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